Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

100 cubes were placed into a sack and each numbered from 1 [#permalink]
17 Nov 2007, 15:40

1

This post was BOOKMARKED

100 cubes were placed into a sack and each numbered from 1 to 100. If three cubes are to be withdrawn with replacement, What is the probability that the sum of the numbers on the withdrawn 3 cubes will be odd.

100 cubes were placed into a sack and each numbered from 1 to 100. If three cubes are to be withdrawn with replacement, What is the probability that the sum of the numbers on the withdrawn 3 cubes will be odd.

I get 1/4

two ways to get an odd number...

one odd and two even,
three odd

For each case, the chance is 1/8. Together, 2/8.

Or if we count the permutations - 1/2 - odd even even, odd odd odd, even odd even, even even odd.

Last edited by alrussell on 17 Nov 2007, 16:30, edited 1 time in total.

Why does the order of EVEN, ODD numbers matter when we are looking for sum of the numbers ?
Actually, with replacement makes me think that order does n't matter because the chances of EVEN and ODD numbers are equally likely...

100 cubes were placed into a sack and each numbered from 1 to 100. If three cubes are to be withdrawn with replacement, What is the probability that the sum of the numbers on the withdrawn 3 cubes will be odd.

OOO combination * probability +OEE combination * probability = 1*(50C1 *50C1*50C1/100C1*100C1*100C1) + 3!/2! *(50C1 *50C1*50C1/100C1*100C1*100C1) = 4 *1/8 =1/2 _________________

Your attitude determines your altitude Smiling wins more friends than frowning

100 cubes were placed into a sack and each numbered from 1 to 100. If three cubes are to be withdrawn with replacement, What is the probability that the sum of the numbers on the withdrawn 3 cubes will be odd.

Any integer has the same chance if replaced. so 1/2 should be answer. but with no replacement, it will be different. _________________