SergeyOrshanskiy wrote:

The single person is no different from an empty chair

Thus, there are \(\frac{{5*4}}{2}=10\) ways to pick two chairs for the couple, but only 4 in which they sit together (CCEEE, ECCEE, EECCE, EEECC).

1 - 4/10 = 3/5 is the answer.

The perspective we often use to solve such questions is this: The vacant seats are no different from two identical people. Assume that each vacant spot is taken by an imaginary person V.

'The single person is no different from an empty chair' is a refreshing perspective that we can use! Good point!

Assume the rest of the three chairs are vacant. Since it is a probability question, the probability we will obtain will be correct. Mind you, the number of ways in which you can arrange a couple and an individual is not given by 10. It is given by 60 only (as shown by Bunuel above). But 10 is the number of ways in which we can choose 2 seats for a couple. In 4 of those 10 ways, the seats will be next to each other and in 6 cases they will not be. Hence the probability obtained will be 3/5.

You can also think that you can make the husband and the wife sit in 2 of the 5 chairs in 5*4 = 20 ways. Out of these, in 4*2 = 8 ways, they will sit next to each other. In 12 ways, they will not sit next to each other. So probability will still remain 12/20 = 3/5

As discussed before, in probability questions, whatever logic you use to get the numerator, use the same logic to get the denominator.

_________________

Karishma

Veritas Prep | GMAT Instructor

My Blog

Veritas Prep GMAT course is coming to India. Enroll in our weeklong Immersion Course that starts March 29!

Veritas Prep Reviews