Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
4 baseball players each stand at different corners of a baseball diamo [#permalink]
08 Nov 2009, 13:02
5
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
45% (medium)
Question Stats:
54% (01:40) correct
46% (01:04) wrong based on 248 sessions
4 baseball players each stand at different corners of a baseball diamond. The sides of the diamond are all of equal length. Two arrangements of baseball players are considered different only when the relative positions of the players differ. How many different ways can the baseball players arrange themselves around the diamond?
I got this right, thanks to a guess and a sketch but I am sure there is a way to solve it that is quicker.
OA = B
OE = The total number of arrangements is expressed by a factorial, 4! = 4 × 3 × 2 × 1 = 24, because there are 4 choices for the first player's corner, 3 choices for the second one, and so on. We divide this total by 4 to arrive at the number of different arrangements of players: 24 ÷ 4 = 6.
I get the factorial part, 4*3*2*1 = 24 - but can't figure out why we are dividing by 4?
Re: 4 baseball players each stand at different corners of a baseball diamo [#permalink]
08 Nov 2009, 14:50
6
This post received KUDOS
Expert's post
2
This post was BOOKMARKED
ajthomas wrote:
Before I start, I hope this in the right place. I got this question from another website.
Q: 4 baseball players each stand at different corners of a baseball diamond. The sides of the diamond are all of equal length. Two arrangements of baseball players are considered different only when the relative positions of the players differ. How many different ways can the baseball players arrange themselves around the diamond?
a) 4 b) 6 c) 16 d) 24 e) 256
I got this right, thanks to a guess and a sketch but I am sure there is a way to solve it that is quicker.
OA = B
OE = The total number of arrangements is expressed by a factorial, 4! = 4 × 3 × 2 × 1 = 24, because there are 4 choices for the first player's corner, 3 choices for the second one, and so on. We divide this total by 4 to arrive at the number of different arrangements of players: 24 ÷ 4 = 6.
I get the factorial part, 4*3*2*1 = 24 - but can't figure out why we are dividing by 4?
Thanks for any input.
I don't know why there is such a solution in OE. For me it's circular permutation for 4 which is (4-1)!=3!=6.
The number of circular permutations of n different objects is (n-1)!.
Each circular permutation corresponds to n linear permutations depending on where we start. Since there are exactly n! linear permutations, there are exactly n!/n permutations. Hence, the number of circular permutations is the same as (n-1)!.
When things are arranged in places along a line with first and last place, they form a linear permutation. When things are arranged in places along a closed curve or a circle, in which any place may be regarded as the first or last place, they form a circular permutation.
The permutation in a row or along a line has a beginning and an end, but there is nothing like beginning or end or first and last in a circular permutation. In circular permutations, we consider one of the objects as fixed and the remaining objects are arranged as in linear permutation.
Thus, the number of permutations of 4 objects in a row = 4!, where as the number of circular permutations of 4 objects is (4-1)! = 3!. _________________
Re: 4 baseball players each stand at different corners of a baseball diamo [#permalink]
30 Apr 2015, 20:21
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: 4 baseball players each stand at different corners of a baseball diamo [#permalink]
07 Jul 2015, 08:40
ajthomas wrote:
4 baseball players each stand at different corners of a baseball diamond. The sides of the diamond are all of equal length. Two arrangements of baseball players are considered different only when the relative positions of the players differ. How many different ways can the baseball players arrange themselves around the diamond?
I got this right, thanks to a guess and a sketch but I am sure there is a way to solve it that is quicker.
OA = B
OE = The total number of arrangements is expressed by a factorial, 4! = 4 × 3 × 2 × 1 = 24, because there are 4 choices for the first player's corner, 3 choices for the second one, and so on. We divide this total by 4 to arrive at the number of different arrangements of players: 24 ÷ 4 = 6.
I get the factorial part, 4*3*2*1 = 24 - but can't figure out why we are dividing by 4?
Thanks for any input.
How do i recognize if it's about circular permutation? ) Are there any other good examples/theory about this topic? _________________
Saving was yesterday, heat up the gmatclub.forum's sentiment by spending KUDOS!
PS Please send me PM if I do not respond to your question within 24 hours.
Re: 4 baseball players each stand at different corners of a baseball diamo [#permalink]
07 Jul 2015, 08:45
Expert's post
reto wrote:
ajthomas wrote:
4 baseball players each stand at different corners of a baseball diamond. The sides of the diamond are all of equal length. Two arrangements of baseball players are considered different only when the relative positions of the players differ. How many different ways can the baseball players arrange themselves around the diamond?
I got this right, thanks to a guess and a sketch but I am sure there is a way to solve it that is quicker.
OA = B
OE = The total number of arrangements is expressed by a factorial, 4! = 4 × 3 × 2 × 1 = 24, because there are 4 choices for the first player's corner, 3 choices for the second one, and so on. We divide this total by 4 to arrive at the number of different arrangements of players: 24 ÷ 4 = 6.
I get the factorial part, 4*3*2*1 = 24 - but can't figure out why we are dividing by 4?
Thanks for any input.
How do i recognize if it's about circular permutation? ) Are there any other good examples/theory about this topic?
Players make closed circle, so circular arrangement.
Re: 4 baseball players each stand at different corners of a baseball diamo [#permalink]
12 Sep 2015, 12:55
Im not that good at this topic, Still we know all 4 spots are occupied. so the maximum combinations possible are 6. ie 4C2. 4C4, 4C3 = 4C1 are much lesser in value, we need highest value.
Re: 4 baseball players each stand at different corners of a baseball diamo [#permalink]
24 Dec 2015, 12:31
Bunuel wrote:
ajthomas wrote:
Before I start, I hope this in the right place. I got this question from another website.
Q: 4 baseball players each stand at different corners of a baseball diamond. The sides of the diamond are all of equal length. Two arrangements of baseball players are considered different only when the relative positions of the players differ. How many different ways can the baseball players arrange themselves around the diamond?
a) 4 b) 6 c) 16 d) 24 e) 256
I got this right, thanks to a guess and a sketch but I am sure there is a way to solve it that is quicker.
OA = B
OE = The total number of arrangements is expressed by a factorial, 4! = 4 × 3 × 2 × 1 = 24, because there are 4 choices for the first player's corner, 3 choices for the second one, and so on. We divide this total by 4 to arrive at the number of different arrangements of players: 24 ÷ 4 = 6.
I get the factorial part, 4*3*2*1 = 24 - but can't figure out why we are dividing by 4?
Thanks for any input.
I don't know why there is such a solution in OE. For me it's circular permutation for 4 which is (4-1)!=3!=6.
The number of circular permutations of n different objects is (n-1)!.
Each circular permutation corresponds to n linear permutations depending on where we start. Since there are exactly n! linear permutations, there are exactly n!/n permutations. Hence, the number of circular permutations is the same as (n-1)!.
When things are arranged in places along a line with first and last place, they form a linear permutation. When things are arranged in places along a closed curve or a circle, in which any place may be regarded as the first or last place, they form a circular permutation.
The permutation in a row or along a line has a beginning and an end, but there is nothing like beginning or end or first and last in a circular permutation. In circular permutations, we consider one of the objects as fixed and the remaining objects are arranged as in linear permutation.
Thus, the number of permutations of 4 objects in a row = 4!, where as the number of circular permutations of 4 objects is (4-1)! = 3!.
HI BB,
I'm not sure if the correct answer is 3!. Here is my understanding. Feel free to correct me. However, I am still unable to arrive at correct answer!
In general, YES.. it is (n-1)! incase of circular arrangement. But, Can a diamond (with equal sides) be circular? I guess, it can be considered a square arrangement. In such cases, should not it be 2 x (n-1)! ie; 2 x (3!) = 12
4 baseball players each stand at different corners of a baseball diamo [#permalink]
28 Dec 2015, 19:28
1
This post received KUDOS
Expert's post
madhusudhan237 wrote:
HI BB,
I'm not sure if the correct answer is 3!. Here is my understanding. Feel free to correct me. However, I am still unable to arrive at correct answer!
In general, YES.. it is (n-1)! incase of circular arrangement. But, Can a diamond (with equal sides) be circular? I guess, it can be considered a square arrangement. In such cases, should not it be 2 x (n-1)! ie; 2 x (3!) = 12
Responding to a pm:
It is not an international quality question and hence unsuitable for GMAT. Note that an international applicant may not know that a "baseball diamond" is supposed to be a square (the question doesn't say this). What one may assume is that it is a diamond (a kite or a rhombus). So there will be two types of corners in general and the first person can occupy the first place in 2 ways. The rest will occupy places in 3! ways and hence you might get the answer as 12. If it were specified that it is a square, then all corners would be the same and you would get the answer as 3!. _________________
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...