Find all School-related info fast with the new School-Specific MBA Forum

 It is currently 25 Aug 2016, 02:42

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# 6 people form groups of 2 for a practical work. Each group

Author Message
TAGS:

### Hide Tags

Director
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)
Followers: 90

Kudos [?]: 819 [0], given: 43

### Show Tags

16 Sep 2012, 09:02
fameatop wrote:
Bunuel wrote:
Gusano97 wrote:
A) 6 people form groups of 2 for a practical work. Each group is assigned one of three continents: Asia, Europe or Africa. In how many different ways can the work be organized?

B) In a group of 10 people, 6 women and 4 men. If a comission of three people has to be formed with at least one man, how many groups can we form?

Hi, and welcome to the Gmat Club. Below are the solutions for your problems. Hope it helps.

A. 6 people form groups of 2 for a practical work. Each group is assigned one of three continents: Asia, Europe or Africa. In how many different ways can the work be organized?

# of ways 6 people can be divided into 3 groups when order matters is: $$C^2_6*C^2_4*C^2_2=90$$.

Hi Bunuel,

In reference to the first question, i have a doubt which is- 90 is the no of ways in which 6 people can be divided into 3 groups of 2 persons each.
Shouldn't the answer be 90 x 6 = 540 because these 3 different teams can be sent to 3 different location in 3! ways.

Kindly correct me if i am wrong.

You are right, it should be 90*3! = 540. Order of groups matters here, as we have different continents.
_________________

PhD in Applied Mathematics
Love GMAT Quant questions and running.

Senior Manager
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GMAT 1: Q V0
GPA: 3.23
Followers: 25

Kudos [?]: 384 [0], given: 11

Re: 6 people form groups of 2 for a practical work. Each group [#permalink]

### Show Tags

28 Dec 2012, 03:35
Gusano97 wrote:
A) 6 people form groups of 2 for a practical work. Each group is assigned one of three continents: Asia, Europe or Africa. In how many different ways can the work be organized?

My approach:
How many ways to select 2-2-2 from 6 people?
$$=\frac{6!}{2!4!}*\frac{4!}{2!2!}*\frac{2!}{2!} = 90$$

How many ways to distribute to 3 groups? $$\frac{3!}{3!}=1$$
We divided by 3! because of 2 2 2 are identical distributions over 3 groups.

_________________

Impossible is nothing to God.

Senior Manager
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GMAT 1: Q V0
GPA: 3.23
Followers: 25

Kudos [?]: 384 [0], given: 11

Re: 6 people form groups of 2 for a practical work. Each group [#permalink]

### Show Tags

28 Dec 2012, 03:39
Gusano97 wrote:
A)
In a group of 10 people, 6 women and 4 men. If a comission of three people has to be formed with at least one man, how many groups can we form?

What are our possibilities:
M M M $$=\frac{4!}{3!1!}=4$$
M W W $$=\frac{4!}{1!3!}*\frac{6!}{2!4!}= 4 * 15 = 60$$
M M W $$=\frac{4!}{2!2!}*\frac{6!}{1!5!} = 6 * 6 = 36$$

$$=60+4+36 = 100$$

_________________

Impossible is nothing to God.

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 11046
Followers: 510

Kudos [?]: 134 [0], given: 0

Re: 6 people form groups of 2 for a practical work. Each group [#permalink]

### Show Tags

22 Jan 2014, 16:19
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 11046
Followers: 510

Kudos [?]: 134 [0], given: 0

Re: 6 people form groups of 2 for a practical work. Each group [#permalink]

### Show Tags

02 Apr 2015, 14:30
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Manager
Joined: 23 Sep 2013
Posts: 105
Concentration: Strategy, Marketing
WE: Engineering (Computer Software)
Followers: 1

Kudos [?]: 14 [0], given: 66

6 people form groups of 2 for a practical work. Each group [#permalink]

### Show Tags

10 Jun 2016, 05:16
Bunuel wrote:
Gusano97 wrote:
A) 6 people form groups of 2 for a practical work. Each group is assigned one of three continents: Asia, Europe or Africa. In how many different ways can the work be organized?

B) In a group of 10 people, 6 women and 4 men. If a comission of three people has to be formed with at least one man, how many groups can we form?

Hi, and welcome to the Gmat Club. Below are the solutions for your problems. Hope it helps.

A. 6 people form groups of 2 for a practical work. Each group is assigned one of three continents: Asia, Europe or Africa. In how many different ways can the work be organized?

# of ways 6 people can be divided into 3 groups when order matters is: $$C^2_6*C^2_4*C^2_2=90$$.

Similar topics:
probability-85993.html?highlight=divide+groups
combination-55369.html#p690842
probability-88685.html#p669025
combination-groups-and-that-stuff-85707.html#p642634
sub-committee-86346.html?highlight=divide+groups

B. In a group of 10 people, 6 women and 4 men. If a comission of three people has to be formed with at least one man, how many groups can we form?

Let's find the probability of the opposite event and subtract it from 1.

Opposite event would be that in the committee of 3 won't be any man (so only women) - $$P(m=0)=P(w=3)=\frac{C^3_6}{C^3_{10}}=\frac{1}{6}$$. $$C^3_6$$ - # of ways to choose 3 women out 6 women; $$C^3_{10}$$ - total # of ways to choose 3 people out of 10.

$$P(m\geq{1})=1-P(m=0)=1-\frac{1}{6}=\frac{5}{6}$$.

Answer: $$\frac{5}{6}$$

Hi Bunuel !

With reference to your one previous post mentioned below:

GENERAL RULE:
1. The number of ways in which $$mn$$ different items can be divided equally into $$m$$ groups, each containing $$n$$ objects and the order of the groups is important is $$\frac{(mn)!}{(n!)^m}$$

2. The number of ways in which $$mn$$ different items can be divided equally into $$m$$ groups, each containing $$n$$ objects and the order of the groups is NOT important is $$\frac{(mn)!}{(n!)^m*m!}$$.

Why is order important in both these questions? Perhaps I'm not able to get the real rationale behind 'order'.
I presumed the order to be inconsequential and hence divided the equations in both questions by 2 .

Specifically can you please tell how relevance of order create distinct groups(if you can actually mention the groups) in the 2nd example:

B) In a group of 10 people, 6 women and 4 men. If a comission of three people has to be formed with at least one man, how many groups can we form?

Regards
SR
6 people form groups of 2 for a practical work. Each group   [#permalink] 10 Jun 2016, 05:16

Go to page   Previous    1   2   [ 26 posts ]

Similar topics Replies Last post
Similar
Topics:
5 A line of people is divided into groups. Each group consists 5 26 Feb 2012, 00:59
2 How many different groups of 3 people can be formed from a 5 10 Oct 2010, 14:19
2 A committee of 3 has to be formed randomly from a group of 6 people. 8 23 Jul 2010, 08:56
5 A committee of 3 has to be formed randomly from a group of 6 people. 6 29 Dec 2009, 20:56
19 A committee of 3 has to be formed randomly from a group of 6 20 18 Jul 2009, 14:03
Display posts from previous: Sort by