Find all School-related info fast with the new School-Specific MBA Forum

It is currently 16 Sep 2014, 17:36

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

A 4-letter code word consists of letters A, B, and C. If the

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Current Student
avatar
Joined: 20 Sep 2011
Posts: 22
Followers: 0

Kudos [?]: 12 [0], given: 0

Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 02 Jul 2012, 19:15
What about this method?
I used the slot method to answer this one.
XXXX - First slot you have three options, second slot you have three options (nothing says you can't repeat letters), third slot you have two options and fourth slot you have two options to make sure that you include at least all of the letters. 3*3*2*2 = 36
Senior Manager
Senior Manager
User avatar
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GMAT 1: Q V0
GPA: 3.23
Followers: 15

Kudos [?]: 195 [0], given: 11

GMAT ToolKit User GMAT Tests User
Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 27 Dec 2012, 01:17
GHIBI wrote:

A 4-letter code word consists of letters A, B, and C. If the code includes all the three letters, how many such codes are possible?
A. 72
B. 48
C. 36
D. 24
E. 18


So, the 4-letter code will have A,B,C and a repeat letter from either A,B or C.
Our possible selections could be: {A,A,B,C}, {B,B,A,C}, and {C,C,A,B}


A,A,B,C --> 4!/2! = 12
B,B,A,C --> 4!/2! = 12
C,C,B,A --> 4!/2! = 12

Answer: 36
_________________

Impossible is nothing to God.

Manager
Manager
User avatar
Joined: 12 Jan 2013
Posts: 58
Location: United States (NY)
GMAT 1: 780 Q51 V47
GPA: 3.89
Followers: 11

Kudos [?]: 49 [0], given: 13

Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 13 Jan 2013, 23:20
First pick which letter is doubled. There are 3 ways. Without loss of generality, A is doubled.
Then pick a place for B. There are 4 ways to pick a place for B.
Then pick a place for C. There are 3 ways to pick a place for C.
Then place the two A's.

3*4*3=36.

It is similar to AKProdigy87's solution, except that we don't even need the 4C2. No formula whatsoever, just multiplication.
_________________

Sergey Orshanskiy, Ph.D.
I tutor in NYC: http://www.wyzant.com/Tutors/NY/New-Yor ... ref=1RKFOZ

Manager
Manager
User avatar
Joined: 07 Feb 2011
Posts: 89
Followers: 0

Kudos [?]: 17 [0], given: 43

Re: PS - Prob. of A 4-letter code [#permalink] New post 27 Jan 2013, 14:50
AKProdigy87 wrote:
I get C: 36 as well. This is how I approached the problem:

The 4 letters can be distinguished as follows:
X - the letter which is duplicated.
Y and Z - the two remaining letters, with Y always preceding Z in the code word.

As a result, a code word looks like XXYZ, or XYXZ, etc.

The number of possible combinations is as follows:

4C2 - choose 2 of the 4 character places to put the duplicate characters (X in this case)
* 3! - 3 ways to choose X, 2 ways to choose Y, 1 way to choose Z.

4C2 * 3! = 36



What I don't get about this approach is why we don't multiply by 2! to account for the different permutations of YZ, and hence have an answer of 72.

I know it's an old problem, but would someone care to explain?

Where is this permutation of 2! for YZ already accounted for in this problem? That's really unclear to me
_________________

We appreciate your kudos'

Manager
Manager
User avatar
Joined: 12 Jan 2013
Posts: 58
Location: United States (NY)
GMAT 1: 780 Q51 V47
GPA: 3.89
Followers: 11

Kudos [?]: 49 [0], given: 13

Re: PS - Prob. of A 4-letter code [#permalink] New post 27 Jan 2013, 20:20
manimgoindowndown wrote:
I know it's an old problem, but would someone care to explain?

Where is this permutation of 2! for YZ already accounted for in this problem? That's really unclear to me

AABC, ABAC, ABCA, BAAC, BACA, BCAA, AACB, ACAB, ACBA, CAAB, CABA, CBAA
BBAC, BABC, BACB, ABBC, ABCB, ACBB, BBCA, BCBA, BCAB, CBBA, CBAB, CABB
CCAB, CACB, CABC, ACCB, ACBC, ABCC, CCBA, CBCA, CBAC, BCCA, BCAC, BACC

We agree that Y always preceeds Z. Then we have two ways to choose Y. For example, if B repeats twice, then we may have Y=A (e.g. BBAC) or Y=C (e.g. BBCA). Y and Z cannot be permuted.
_________________

Sergey Orshanskiy, Ph.D.
I tutor in NYC: http://www.wyzant.com/Tutors/NY/New-Yor ... ref=1RKFOZ

Intern
Intern
avatar
Joined: 20 Apr 2013
Posts: 24
Concentration: Finance, Finance
GMAT Date: 06-03-2013
GPA: 3.3
WE: Accounting (Accounting)
Followers: 0

Kudos [?]: 1 [0], given: 99

Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 05 May 2013, 11:34
Bunuel Please Clarify my doubt.

If the code includes all the three letters, then the 4th letter can any letter from ABCDEFG.... XYZ.

The question doesn't specify that the 4 letter code includes only A, B and C.

GHIBI wrote:
A 4-letter code word consists of letters A, B, and C. If the code includes all the three letters, how many such codes are possible?

A. 72
B. 48
C. 36
D. 24
E. 18
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29655
Followers: 3491

Kudos [?]: 26230 [0], given: 2707

Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 05 May 2013, 22:10
Expert's post
Rajkiranmareedu wrote:
Bunuel Please Clarify my doubt.

If the code includes all the three letters, then the 4th letter can any letter from ABCDEFG.... XYZ.

The question doesn't specify that the 4 letter code includes only A, B and C.

GHIBI wrote:
A 4-letter code word consists of letters A, B, and C. If the code includes all the three letters, how many such codes are possible?

A. 72
B. 48
C. 36
D. 24
E. 18


I think that it is specified.

We are told that a 4-letter code consists of letters A, B, and C and that the code includes ALL the three letters A, B, and C (so the case of AAAA is not possible).
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
User avatar
Joined: 19 Mar 2013
Posts: 17
Followers: 0

Kudos [?]: 2 [0], given: 24

CAT Tests
Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 10 Dec 2013, 03:15
My approach is the following:
aabc - 3!2! (aa as one unit, which gives 3!, b and c interchangeable, which is 2!)
bbac - 3!2!
ccab - 3!2!

12+12+12=36
Is it correct?
Thank you
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29655
Followers: 3491

Kudos [?]: 26230 [1] , given: 2707

Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 10 Dec 2013, 03:25
1
This post received
KUDOS
Expert's post
Christy111 wrote:
My approach is the following:
aabc - 3!2! (aa as one unit, which gives 3!, b and c interchangeable, which is 2!)
bbac - 3!2!
ccab - 3!2!

12+12+12=36
Is it correct?
Thank you


First of all: 3!/2!=3, thus you'd have 3 + 3 + 3 = 9, not 12 + 12 + 12 = 36.

The number of ways to arrange AABC is 4!/2!=12. There is no need to consider AA as one unit, because we do not need AA to be together in each arrangement of AABC.

For complete solution check here: a-4-letter-code-word-consists-of-letters-a-b-and-c-if-the-59065.html#p782466

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

SVP
SVP
User avatar
Joined: 06 Sep 2013
Posts: 1661
Location: United States
Concentration: Finance
GMAT 1: 710 Q48 V39
WE: Corporate Finance (Investment Banking)
Followers: 12

Kudos [?]: 164 [0], given: 268

GMAT ToolKit User
Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 30 Dec 2013, 04:17
GHIBI wrote:
A 4-letter code word consists of letters A, B, and C. If the code includes all the three letters, how many such codes are possible?

A. 72
B. 48
C. 36
D. 24
E. 18


OA is incorrect. Answer should be E as mentioned above

Slot method

3 choices for first slot
2 choices for second
1 choice for third
3 choice for fourth since once we have all of the letters then we can choose any of them

Hence answer is 3!*3

18

Hope it helps
Cheers!
J :)
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29655
Followers: 3491

Kudos [?]: 26230 [0], given: 2707

Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 30 Dec 2013, 04:27
Expert's post
jlgdr wrote:
GHIBI wrote:
A 4-letter code word consists of letters A, B, and C. If the code includes all the three letters, how many such codes are possible?

A. 72
B. 48
C. 36
D. 24
E. 18


OA is incorrect. Answer should be E as mentioned above

Slot method

3 choices for first slot
2 choices for second
1 choice for third
3 choice for fourth since once we have all of the letters then we can choose any of them

Hence answer is 3!*3

18

Hope it helps
Cheers!
J :)


The OA is correct. Please check here: a-4-letter-code-word-consists-of-letters-a-b-and-c-if-the-59065.html#p782466

Hope this helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 17 Jan 2014
Posts: 8
Followers: 0

Kudos [?]: 0 [0], given: 26

Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 18 Jan 2014, 19:25
Another solution:
P(3,3)C(3,1)P(2,1)=36

(C)
Intern
Intern
avatar
Joined: 13 Dec 2013
Posts: 31
Schools: AGSM '16
GMAT 1: 620 Q42 V33
Followers: 2

Kudos [?]: 6 [0], given: 10

GMAT ToolKit User
Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 18 Apr 2014, 16:41
I get the solutions, but can some one explain to me where is it stated in the problem that the code can't be: AAAA, BBBB, etc.

My approach was that if you have 4 slots, then each slot can take either 3 letters without discrimination.

Are we to assume a code can't be all-the-same?



Edit: Scratch that, I read it again and it has to include all the letters in every scenario.
Manager
Manager
User avatar
Joined: 22 Feb 2009
Posts: 229
Followers: 5

Kudos [?]: 33 [0], given: 132

GMAT ToolKit User CAT Tests
Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 31 Jul 2014, 00:17
Bunuel wrote:
MBAwannabe10 wrote:
here is my approach:
3*2*1*3 = 18 but there is 4!/2! of arranging them =>36 ways in the end


I don't see how the above way is giving 36 as an answer.

A 4-letter code word consists of letters A, B, and C. If the code includes all the three letters, how many such codes are possible?
A. 72
B. 48
C. 36
D. 24
E. 18

As code must include all the three letters then pattern of the code word is ABCX where X can be any letter out of A, B, and C. So we can have the code word consisting of letters:
ABCA;
ABCB;
ABCC.

We can arrange letters in each of above 3 cases in \frac{4!}{2!} # of ways (as each case has 4 letters out of which one is repeated twice), so total # of code words is 3*\frac{4!}{2!}=36.

Answer: C.

Hope it helps.


Could you please prove that "Total number of permutations for a set of 'n' objects of which 'r' objects are identical is n!/r!" or show me the link that explain the formulation n!/r!?
_________________

.........................................................................
+1 Kudos please, if you like my post

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 29655
Followers: 3491

Kudos [?]: 26230 [0], given: 2707

Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 31 Jul 2014, 01:20
Expert's post
vad3tha wrote:
Bunuel wrote:
MBAwannabe10 wrote:
here is my approach:
3*2*1*3 = 18 but there is 4!/2! of arranging them =>36 ways in the end


I don't see how the above way is giving 36 as an answer.

A 4-letter code word consists of letters A, B, and C. If the code includes all the three letters, how many such codes are possible?
A. 72
B. 48
C. 36
D. 24
E. 18

As code must include all the three letters then pattern of the code word is ABCX where X can be any letter out of A, B, and C. So we can have the code word consisting of letters:
ABCA;
ABCB;
ABCC.

We can arrange letters in each of above 3 cases in \frac{4!}{2!} # of ways (as each case has 4 letters out of which one is repeated twice), so total # of code words is 3*\frac{4!}{2!}=36.

Answer: C.

Hope it helps.


Could you please prove that "Total number of permutations for a set of 'n' objects of which 'r' objects are identical is n!/r!" or show me the link that explain the formulation n!/r!?


Permutations of n things of which P_1 are alike of one kind, P_2 are alike of second kind, P_3 are alike of third kind ... P_r are alike of r_{th} kind such that: P_1+P_2+P_3+..+P_r=n is:

\frac{n!}{P_1!*P_2!*P_3!*...*P_r!}.

For example number of permutation of the letters of the word "gmatclub" is 8! as there are 8 DISTINCT letters in this word.

Number of permutation of the letters of the word "google" is \frac{6!}{2!2!}, as there are 6 letters out of which "g" and "o" are represented twice.

Number of permutation of 9 balls out of which 4 are red, 3 green and 2 blue, would be \frac{9!}{4!3!2!}.

Theory on Combinations: math-combinatorics-87345.html

DS questions on Combinations: search.php?search_id=tag&tag_id=31
PS questions on Combinations: search.php?search_id=tag&tag_id=52

Tough and tricky questions on Combinations: hardest-area-questions-probability-and-combinations-101361.html

_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
avatar
Joined: 15 Aug 2013
Posts: 280
Followers: 0

Kudos [?]: 11 [0], given: 23

Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 23 Aug 2014, 09:58
Bunuel wrote:
pavanpuneet wrote:
Here is how I tried to solve the question:

Consider XXXX = Assume the first three position is taken as for letters ABC those can be filled in 3! ways and then last letter can be filled in 3 ways... thus a total 18 ways.

Next, assume, that it XABC = 18 ways; next. CXAB = 18 ways; next BCXA = 18 ways... thus a total of 18*4 = 72ways!


Note that the correct answer to this question is 36, not 72.

A-ABC can be arranged in 4!/2!=12 ways;
B-ABC can be arranged in 4!/2!=12 ways;
C-ABC can be arranged in 4!/2!=12 ways;

Total: 12+12+12=36.

Answer: C.


Hi Bunuel,

Maybe I didn't read the question stem correctly, but at first, I did 3^4 (because 3 letters can go in each slot) -- this yields 81 which is not a choice. Then I realized that we need to have ABC(unknown) and my method can yield all A's or B's etc, therefore it's wrong. Is that the correct analysis?

That being said, I cannot come to terms with your formula above. How are we choosing 2 out of 4? isn't that what 4!/2! implies? Additionally, we don't really know where the unknown letter will go, it can go in slot 1, 2, 3, or 4. Can you please help me understand how you came up with the formula above?
Manager
Manager
avatar
Joined: 28 Aug 2013
Posts: 69
Location: India
Concentration: Operations, Marketing
Schools: Insead '14, ISB '15
GMAT Date: 08-28-2014
GPA: 3.86
WE: Supply Chain Management (Manufacturing)
Followers: 0

Kudos [?]: 15 [0], given: 11

Re: A 4-letter code word consists of letters A, B, and C. If the [#permalink] New post 14 Sep 2014, 00:56
walker wrote:
E

N=C^3_1*C^2_1*C^1_1*C^3_1=3*2*1*3=18

or

N=3^4-C^3_1-C^3_1*C^2_1*C^4_1-C^3_1*C^4_2*C^2_1*C^2_2=81-3*2*4-3*6*2*1=81-3-24-36=18

or

N=P^3_3*C^3_1=3*2*3=18



No doubt you are good in this !!

But plz explain while going doing solution
_________________

G-prep1 540 --> Kaplan 580-->Veritas 640-->MGMAT 590 -->MGMAT 2 640 --> MGMAT 3 640 ---> MGMAT 4 650 -->MGMAT 5 680 -- >GMAT prep 1 570

Give your best shot...rest leave upto Mahadev, he is the extractor of all negativity in the world !!

Re: A 4-letter code word consists of letters A, B, and C. If the   [#permalink] 14 Sep 2014, 00:56
    Similar topics Author Replies Last post
Similar
Topics:
10 Experts publish their posts in the topic How many words can be formed by taking 4 letters at a time jatt86 13 14 Apr 2010, 04:33
A code is made from a sequence of 4 letters. How many lfox2 3 09 Oct 2006, 23:00
From the word TRAMPLE 4 letters are taken. What is the BumblebeeMan 9 25 Oct 2005, 03:45
4 letters are randomly selected from the word TRAMPLE. What GMATT73 5 01 Oct 2005, 21:46
How many words can be formed by taking 4 letters at a time ashkg 3 13 Jun 2005, 07:42
Display posts from previous: Sort by

A 4-letter code word consists of letters A, B, and C. If the

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1   2   [ 37 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.