Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

a, b, and c are integers and a < b < c. S is the set of all [#permalink]
06 Feb 2012, 02:37

1

This post received KUDOS

00:00

A

B

C

D

E

Difficulty:

65% (medium)

Question Stats:

51% (03:34) correct
48% (02:44) wrong based on 82 sessions

a, b, and c are integers and a < b < c. S is the set of all integers from a to b, inclusive. Q is the set of all integers from b to c, inclusive. The median of set S is (3/4) b. The median of set Q is (7/8) c. If R is the set of all integers from a to c, inclusive, what fraction of c is the median of set R?

Re: Median of a combined interval [#permalink]
06 Feb 2012, 02:49

5

This post received KUDOS

Expert's post

nonameee wrote:

a, b, and c are integers and a < b < c. S is the set of all integers from a to b, inclusive. Q is the set of all integers from b to c, inclusive. The median of set S is (3/4) b. The median of set Q is (7/8) c. If R is the set of all integers from a to c, inclusive, what fraction of c is the median of set R?

Bunuel or someone else, where am I going wrong with this one?

Median of a combined interval will be in the middle between the median of Q and the median of S:

(3/4 b + 7/8 c) * 1/2 (1)

From the formula for median of Q we get:

(b+c)/2 = 7/8 c ==> b = 3/4 c (2)

Substituting b from (2) into (1) we get:

(3/4 *3/4c + 7/8 c) * 1/2 ==> 23/32 c

Please help.

Thank you.

Given that S is the set of all integers from a to b, inclusive, Q is the set of all integers from b to c, inclusive and R is the set of all integers from a to c, inclusive, so sets S, Q and R have to be consecutive integers sets. For any set of consecutive integers (generally for any evenly spaced set) median (also the mean) equals to the average of the first and the last terms.

So we have: Median of S=\frac{a+b}{2}=b*\frac{3}{4} --> b=2a;

Median of Q=\frac{b+c}{2}=c*\frac{7}{8} --> b=c*\frac{3}{4} --> 2a=c*\frac{3}{4} --> a=c*\frac{3}{8};

Median of R=\frac{a+c}{2}=\frac{c*\frac{3}{8}+c}{2}=c*\frac{11}{16}

Re: Median of a combined interval [#permalink]
06 Feb 2012, 03:01

Another quick question, so for this question we're assuming that the medium is equal to mean. I thought the only way for that to happen is if there is no skewness in the set, but it doesn't say that anywhere. Is there any sort of general rule to tell if medium = mean?

Re: Median of a combined interval [#permalink]
06 Feb 2012, 03:39

Expert's post

kys123 wrote:

Another quick question, so for this question we're assuming that the medium is equal to mean. I thought the only way for that to happen is if there is no skewness in the set, but it doesn't say that anywhere. Is there any sort of general rule to tell if medium = mean?

Thanks so much Bunuel

For any evenly spaced set (aka AP) the arithmetic mean (average) is equal to the median (consecutive integers are evenly spaced set).
_________________

Re: Median of a combined interval [#permalink]
06 Feb 2012, 04:20

Expert's post

nonameee wrote:

Bunuel, so in order to determine a median of two intervals of integers (a,b) and (b,c) (where a<b<c), you should always use the formula: (a+c)/2?

The median (mean) of the integers from a to c, inclusive is always (a+c)/2 (if you have some additional info you can obtain this value in another way but this way is ALWAYS true).

Consider two sets: {1, 2, 3} and {3, 4, 5, 6, 7, 8, 9} --> combined set {1, 2, 3, 4, 5, 6, 7 8, 9}

As you've written the median (mean) of combined set should be (2+6)/2=4, which is wrong as median of combined set is 5.

Re: Median of a combined interval [#permalink]
03 Dec 2012, 10:14

Bunuel wrote:

kys123 wrote:

Another quick question, so for this question we're assuming that the medium is equal to mean. I thought the only way for that to happen is if there is no skewness in the set, but it doesn't say that anywhere. Is there any sort of general rule to tell if medium = mean?

Thanks so much Bunuel

For any evenly spaced set (aka AP) the arithmetic mean (average) is equal to the median (consecutive integers are evenly spaced set).

Bunuel,

how do we know that they are evenly spaced. The a<b< c can be 1<2<3 or random 4<78<125 (not evenly spaced). Am i missing something?

Re: Median of a combined interval [#permalink]
04 Dec 2012, 03:15

1

This post received KUDOS

Expert's post

aditi2013 wrote:

Bunuel wrote:

kys123 wrote:

Another quick question, so for this question we're assuming that the medium is equal to mean. I thought the only way for that to happen is if there is no skewness in the set, but it doesn't say that anywhere. Is there any sort of general rule to tell if medium = mean?

Thanks so much Bunuel

For any evenly spaced set (aka AP) the arithmetic mean (average) is equal to the median (consecutive integers are evenly spaced set).

Bunuel,

how do we know that they are evenly spaced. The a<b< c can be 1<2<3 or random 4<78<125 (not evenly spaced). Am i missing something?

Given that "S is the set of all integers from a to b, inclusive" and "Q is the set of all integers from b to c, inclusive", which means that both S and Q are sets of consecutive integers, thus evenly spaced sets.

Re: a, b, and c are integers and a < b < c. S is the set of all [#permalink]
10 Jul 2013, 01:58

Bunnel, if i take set S as 3,6,8 and set Q as 8,14,16 whats wrong with it? satisfy questions requirement and are not in AP. We cant apply consecutive integers formula then.

Re: a, b, and c are integers and a < b < c. S is the set of all [#permalink]
10 Jul 2013, 02:09

1

This post received KUDOS

Expert's post

abhinawster wrote:

Bunnel, if i take set S as 3,6,8 and set Q as 8,14,16 whats wrong with it? satisfy questions requirement and are not in AP. We cant apply consecutive integers formula then.

S is the set of all integers from a to b, inclusive. Say a=3 and b=8. What is set S then? S={3, 4, 5, 6, 7, 8} not {3, 6, 8}, where did 4, 5 and 7 go? Aren't they integers in the range from 3 to 8?