Find all School-related info fast with the new School-Specific MBA Forum

It is currently 21 Aug 2014, 18:09

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

a, b, c, and d are positive integers. If (a + b) (c – d) = r

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Manager
Manager
avatar
Joined: 18 Oct 2011
Posts: 92
Location: United States
Concentration: Entrepreneurship, Marketing
GMAT Date: 01-30-2013
GPA: 3.3
Followers: 2

Kudos [?]: 24 [0], given: 0

a, b, c, and d are positive integers. If (a + b) (c – d) = r [#permalink] New post 16 Jan 2013, 13:31
2
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

60% (02:26) correct 40% (02:06) wrong based on 83 sessions
a, b, c, and d are positive integers. If (a + b) (c – d) = r, where r is an integer, is √(c + d) an integer?

(1) (a + b) (c + d) = r^2
(2) (a + b) = x^4 y^6 z^2, where x, y, and z are distinct prime numbers.

Thought I'd seen 'em all...then got stumped with this one! Give it a try.
[Reveal] Spoiler: OA
Expert Post
5 KUDOS received
Magoosh GMAT Instructor
User avatar
Joined: 28 Dec 2011
Posts: 2030
Followers: 486

Kudos [?]: 1988 [5] , given: 30

Re: a, b, c, and d are positive integers. If (a + b) (c – d) = r [#permalink] New post 16 Jan 2013, 13:47
5
This post received
KUDOS
Expert's post
sambam wrote:
a, b, c, and d are positive integers. If (a + b) (c – d) = r, where r is an integer, is √(c + d) an integer?
(1) (a + b) (c + d) = r^2
(2) (a + b) = x^4 y^6 z^2, where x, y, and z are distinct prime numbers.

I'm happy to help with this. :-)

Statement #1: (a + b) (c + d) = r^2
The prompt told us that (a + b) (c – d) = r. If we divide the statement #1 equation by the prompt equation, we get [(c + d)]/[(c - d)] = r, which is intriguing, but which doesn't, by itself, tell us anything about whether (c + d), the numerator, is a perfect square. This is insufficient.

Statement #2: (a + b) = x^4 y^6 z^2, where x, y, and z are distinct prime numbers
This one definitively tells us that (a + b) is a perfect square, so we know a perfect square times (c - d) equals r, but we know nothing at all about (c + d). This one by itself, doesn't tell us anything. This is insufficient.

Now, consider the statements combined.
Statement #1: (a + b) (c + d) = r^2
Statement #2: (a + b) = x^4 y^6 z^2, where x, y, and z are distinct prime numbers
Now, we know that (a + b) is a perfect square, because it has even powers of all prime factors. We also know that r^2 is a perfect square, so it must also have even powers of all prime factors. This can only mean that (c + d) has even powers of all prime factors, and therefore must be a perfect square.
Another way to say that --- we could re-arrange the statement #1 equation to (c + d) = [r^2]/[(a + b))], and we know this quotient is a positive integer. If the ratio of two squares is an integer, that integer must also be a perfect square.
Either way, the combination of statements is now sufficient to give a definitive answer to the prompt.
Answer = C

One thing that's a little unusual about this question --- with the information in both statements, we could answer the prompt question, but as it turned out, the equation given in the prompt was irrelevant. I don't know that this would happen on the GMAT.

Let me know if anyone reading this has any questions.

Mike :-)
_________________

Mike McGarry
Magoosh Test Prep

Image

Image

SVP
SVP
User avatar
Joined: 06 Sep 2013
Posts: 1627
Location: United States
Concentration: Finance
GMAT 1: 710 Q48 V39
WE: Corporate Finance (Investment Banking)
Followers: 11

Kudos [?]: 152 [0], given: 254

GMAT ToolKit User
Re: a, b, c, and d are positive integers. If (a + b) (c – d) = r [#permalink] New post 06 Jan 2014, 09:04
sambam wrote:
a, b, c, and d are positive integers. If (a + b) (c – d) = r, where r is an integer, is √(c + d) an integer?

(1) (a + b) (c + d) = r^2
(2) (a + b) = x^4 y^6 z^2, where x, y, and z are distinct prime numbers.

Thought I'd seen 'em all...then got stumped with this one! Give it a try.


OK I will give it a try

We are told that (a+b)(c-d) is an integer. We need to find if (c+d) is a perfect square

Statement 1

(a+b)(c+d) = Perfect square

We also have that (a+b)(c-d) is an integer. Let's say x = a+b

Then we have that x(c+d) perfect square and x(c-d) is an integer. What does this tell us?

That x = c+d or that a+b = c+d. But not enough to answer the question

Statement 2

(a+b) = x^4y^6z^2

Clearly insuff

Both together

If (a+b)(c+d) is a perfect square and then (a+b) = x^4y^6z^2 then it must follow that (c+d) is AT LEAST X^2*Z^4 to make it a perfect square

Is X^2*Z^4 a perfect square? Well we are told that x and z are integers so yes

Answer is C

Hope it helps

Kudos rain!!
Cheers!
J :)
Expert Post
2 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4668
Location: Pune, India
Followers: 1073

Kudos [?]: 4781 [2] , given: 163

Re: a, b, c, and d are positive integers. If (a + b) (c – d) = r [#permalink] New post 06 Jan 2014, 23:18
2
This post received
KUDOS
Expert's post
sambam wrote:
a, b, c, and d are positive integers. If (a + b) (c – d) = r, where r is an integer, is √(c + d) an integer?

(1) (a + b) (c + d) = r^2
(2) (a + b) = x^4 y^6 z^2, where x, y, and z are distinct prime numbers.

Thought I'd seen 'em all...then got stumped with this one! Give it a try.


All this question is trying to do is confuse you with a ton of variables. The concept being tested here is simple - the prime factors of a perfect square have even powers.

"is √(c + d) an integer?" is just another way of saying "is (c+d) a perfect square?"

(1) (a + b) (c + d) = r^2
(a + b) (c + d) = (a + b)^2 * (c - d)^2
(c+d) = (a+b)(c - d)^2
We know now that (c+d) is a product of (a+b) and a perfect square. If (a+b) is a perfect square too, then (c+d) is a perfect square. Else it is not. Not sufficient.

(2) (a + b) = x^4 y^6 z^2, where x, y, and z are distinct prime numbers.
This tells us that (a+b) is a perfect square. Though alone it is not sufficient since it doesn't tell us anything about (c+d), together with statement 1, it is sufficient.

Answer (C)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

SVP
SVP
User avatar
Joined: 06 Sep 2013
Posts: 1627
Location: United States
Concentration: Finance
GMAT 1: 710 Q48 V39
WE: Corporate Finance (Investment Banking)
Followers: 11

Kudos [?]: 152 [0], given: 254

GMAT ToolKit User
Re: a, b, c, and d are positive integers. If (a + b) (c – d) = r [#permalink] New post 02 Apr 2014, 14:43
Thanks Karishma, that was precise.

Do you agree with Mike in that it is unlikely that information given in the prompt of a DS question will not be used? Honestly I've never seen a question in which information is given and then not used. Haven't even seen a case such as this one in which it could be used for one of the statements only

Please advice should we worry about this
Thanks!
Cheers
J
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4668
Location: Pune, India
Followers: 1073

Kudos [?]: 4781 [0], given: 163

Re: a, b, c, and d are positive integers. If (a + b) (c – d) = r [#permalink] New post 02 Apr 2014, 20:53
Expert's post
jlgdr wrote:
Thanks Karishma, that was precise.

Do you agree with Mike in that it is unlikely that information given in the prompt of a DS question will not be used? Honestly I've never seen a question in which information is given and then not used. Haven't even seen a case such as this one in which it could be used for one of the statements only

Please advice should we worry about this
Thanks!
Cheers
J


I agree that the question is not very well thought out. It has a lot of clutter as if the question maker had something else in mind but it didn't work out and he changed direction mid way. The prompt equation did not add value to analyzing even statement 1 alone though we figure that out after analyzing it using the prompt equation. It's still equivalent to knowing that r is an integer.

Though it is absolutely fine if the prompt info is useful only for one statement. e.g. often you are given in the prompt that xy is not 0 implying that neither x nor y is 0.
x and/or y might be in the denominator in only one statement. It would be fine.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Re: a, b, c, and d are positive integers. If (a + b) (c – d) = r   [#permalink] 02 Apr 2014, 20:53
    Similar topics Author Replies Last post
Similar
Topics:
1 a, b, c, and d are positive consecutive integers and a < b < Stiv 2 17 Aug 2013, 09:34
2 Experts publish their posts in the topic If for integers a, b, c, and d, a + b + c + d = 4 yogirb8801 2 16 May 2013, 07:19
D C C D A B shashankp27 2 08 Jun 2011, 16:24
a*b*c*d = 770 a,b,c,d are positive integers a<b<c<d grad_mba 7 20 Jun 2007, 19:24
Experts publish their posts in the topic If a, b, c, and d are positive integers, is (a/b) (c/d) > c/ saurya_s 10 23 Sep 2004, 16:52
Display posts from previous: Sort by

a, b, c, and d are positive integers. If (a + b) (c – d) = r

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.