Find all School-related info fast with the new School-Specific MBA Forum

It is currently 13 Jul 2014, 03:42

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

A box contains three pairs of blue gloves and two pairs of

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
2 KUDOS received
Manager
Manager
avatar
Joined: 18 Dec 2011
Posts: 105
Followers: 0

Kudos [?]: 7 [2] , given: 113

A box contains three pairs of blue gloves and two pairs of [#permalink] New post 16 Feb 2012, 16:20
2
This post received
KUDOS
7
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

30% (03:18) correct 69% (03:04) wrong based on 81 sessions
A box contains three pairs of blue gloves and two pairs of green gloves. Each pair consists of a left-hand glove and a right-hand glove. Each of the gloves is separate from its mate and thoroughly mixed together with the others in the box. If three gloves are randomly selected from the box, what is the probability that a matched set (i.e., a left- and right-hand glove of the same color) will be among the three gloves selected?

(A) 3/10
(B) 23/60
(C) 7/12
(D) 41/60
(E) 5/6
[Reveal] Spoiler: OA
Expert Post
4 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18515
Followers: 3196

Kudos [?]: 21381 [4] , given: 2546

Re: A box contains three pairs of blue gloves and two pairs of [#permalink] New post 16 Feb 2012, 22:31
4
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
arps wrote:
A box contains three pairs of blue gloves and two pairs of green gloves. Each pair consists of a left-hand glove and a right-hand glove. Each of the gloves is separate from its mate and thoroughly mixed together with the others in the box. If three gloves are randomly selected from the box, what is the probability that a matched set (i.e., a left- and right-hand glove of the same color) will be among the three gloves selected?

(A) 3/10
(B) 23/60
(C) 7/12
(D) 41/60
(E) 5/6


Let's calculate the opposite probability of NOT getting a matched set and subtract this value from 1.

This could happen only if we pick all three same hand BLUE gloves; two same hand BLUE gloves and any green glove; or two same hand GREEN gloves and any BLUE glove

BBB: 6/10*2/9*1/8=1/60 (after we pick a blue glove, 6/10, then there is 2 same hand gloves left out of total 9 gloves - 2/9, and so on);
BBG: (6/10*2/9*4/8)*3=12/60, multiplying by 3 as this senario can occur in 3 different ways: BBG, BGB, GBB;
GGB: (4/10*1/9*6/8)*3=6/60;

P=1-(1/60+12/60+6/60)=41/60.

Answer: D.

hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
4 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4519
Location: Pune, India
Followers: 1013

Kudos [?]: 4330 [4] , given: 161

Re: A box contains three pairs of blue gloves and two pairs of [#permalink] New post 16 Feb 2012, 23:59
4
This post received
KUDOS
Expert's post
arps wrote:
A box contains three pairs of blue gloves and two pairs of green gloves. Each pair consists of a left-hand glove and a right-hand glove. Each of the gloves is separate from its mate and thoroughly mixed together with the others in the box. If three gloves are randomly selected from the box, what is the probability that a matched set (i.e., a left- and right-hand glove of the same color) will be among the three gloves selected?

(A) 3/10
(B) 23/60
(C) 7/12
(D) 41/60
(E) 5/6


You can use the 'calculating the reverse' method used by Bunuel above or if you would like to calculate the probability of getting a matched set in the usual way, you can think of it in this way:

Bleft (3), Bright(3), Gleft (2), Gright(2)

Bleft, Bright, G
Get a Bleft and Bright in (3/10)*(3/9) ways. Then get any green in 4/8 ways.
Probability of getting B pair and a G = (3/10)*(3/9)*(4/8)*3!
(You multiply by 3! here because you could pick in some other order e.g. Bright, Bleft, G or Bleft, G, Bright etc)

Bleft, Bright, B
Get a Bleft and Bright in (3/10)*(3/9) ways. Then get any blue in 4/8 ways.
Probability of getting B pair and another B = (3/10)*(3/9)*(4/8)*3!/2!
(You multiply by 3! here to account for the order e.g. Bright, Bleft, Bleft or Bleft, Bright, Bright etc but two gloves will be identical so you divide by 2!)

Gleft, Gright, B
Get a Gleft and Gright in (2/10)*(2/9) ways. Then get any Blue in 6/8 ways.
Probability of getting G pair and a B = (2/10)*(2/9)*(6/8)*3!

Gleft, Gright, G
Get a Gleft and Gright in (2/10)*(2/9) ways. Then get any other G in 2/8 ways.
Probability of getting G pair and a G = (2/10)*(2/9)*(2/8)*3!/2!

Adding them all up, you get 41/60.

Note here that we cannot say that let's get Bleft, Bright and then any one of the remaining gloves. We need to take separate cases for the third glove (B or G i.e. first two cases above) because the number of arrangements of Bleft, Bright, G is different from number of arrangements of Bleft, Bright, B as we see above. In one case we multiply by 3! because all 3 gloves are distinct. In the other case, we multiply by 3!/2! because 2 of the gloves are identical. Same logic can be used for the green pair.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Retired Moderator
User avatar
Status: 2000 posts! I don't know whether I should feel great or sad about it! LOL
Joined: 04 Oct 2009
Posts: 1727
Location: Peru
Schools: Harvard, Stanford, Wharton, MIT & HKS (Government)
WE 1: Economic research
WE 2: Banking
WE 3: Government: Foreign Trade and SMEs
Followers: 63

Kudos [?]: 239 [0], given: 109

GMAT Tests User
Re: A box contains three pairs of blue gloves and two pairs of [#permalink] New post 21 Feb 2012, 10:30
VeritasPrepKarishma wrote:
You can use the 'calculating the reverse' method used by Bunuel above or if you would like to calculate the probability of getting a matched set in the usual way, you can think of it in this way:

Bleft (3), Bright(3), Gleft (2), Gright(2)

Bleft, Bright, G
Get a Bleft and Bright in (3/10)*(3/9) ways. Then get any green in 4/8 ways.
Probability of getting B pair and a G = (3/10)*(3/9)*(4/8)*3!
(You multiply by 3! here because you could pick in some other order e.g. Bright, Bleft, G or Bleft, G, Bright etc)


Dear Karishma and Bunuel,
Please, tell me in which part I am wrong and why.

I analized it in this way:
First we are going to see the probabilities when we have a pair of blue gloves =

P(right or left blue glove)* P(the opposite hand blue glove)*P(a green glove) =

\frac{6}{10} * \frac{3}{9} * \frac{4}{8} = \frac{1}{10}

But because there could be different arragements of BBG, we multiply 1/10 by 3!/2!
So, we have \frac{3}{10}

I stop here because I know that my analysis is wong but I don't know exactly why. Why is the combination just between colors is not enough? Why do we have to combine left and right hands too? I think that my approach already has considered right and left hands.

Please your comments.

PS. The approach of Bunuel is awesome, but the other approach gives us a great perspective to grasp a ot of concepts related to combinatronics.
_________________

"Life’s battle doesn’t always go to stronger or faster men; but sooner or later the man who wins is the one who thinks he can."

My Integrated Reasoning Logbook / Diary: my-ir-logbook-diary-133264.html

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4519
Location: Pune, India
Followers: 1013

Kudos [?]: 4330 [0], given: 161

Re: A box contains three pairs of blue gloves and two pairs of [#permalink] New post 21 Feb 2012, 19:50
Expert's post
metallicafan wrote:
Bleft, Bright, G
Get a Bleft and Bright in (3/10)*(3/9) ways. Then get any green in 4/8 ways.
Probability of getting B pair and a G = (3/10)*(3/9)*(4/8)*3!
(You multiply by 3! here because you could pick in some other order e.g. Bright, Bleft, G or Bleft, G, Bright etc)



First we are going to see the probabilities when we have a pair of blue gloves =

P(right or left blue glove)* P(the opposite hand blue glove)*P(a green glove) =

\frac{6}{10} * \frac{3}{9} * \frac{4}{8} = \frac{1}{10}

But because there could be different arragements of BBG, we multiply 1/10 by 3!/2!
So, we have \frac{3}{10}

[/quote]

Your approach is correct if you know why you did what you did. My only question is this: Why did you multiply by 3!/2! instead of 3! (different arrangements of BBG) since the two Bs are different?

If you understand that when you say 6/10 * 3/9, you are already counting in all arrangements of Bleft and Bright and now all you need to do is arrange G with respect to the 2 Bs (i.e. multiply by 3 for the 3 spots where we can put G), then absolutely, go ahead. There is nothing wrong.
(When you say 6/10, you are counting the possibilities of picking a Bleft or a Bright first and whatever is leftover next, so you have already arranged the different Bs.)
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Intern
Intern
avatar
Joined: 27 Jan 2011
Posts: 21
Followers: 0

Kudos [?]: 2 [0], given: 19

Re: A box contains three pairs of blue gloves and two pairs of [#permalink] New post 24 Mar 2012, 10:20
VeritasPrepKarishma wrote:
arps wrote:
A box contains three pairs of blue gloves and two pairs of green gloves. Each pair consists of a left-hand glove and a right-hand glove. Each of the gloves is separate from its mate and thoroughly mixed together with the others in the box. If three gloves are randomly selected from the box, what is the probability that a matched set (i.e., a left- and right-hand glove of the same color) will be among the three gloves selected?

(A) 3/10
(B) 23/60
(C) 7/12
(D) 41/60
(E) 5/6

Bleft, Bright, G
Get a Bleft and Bright in (3/10)*(3/9) ways. Then get any green in 4/8 ways.
Probability of getting B pair and a G = (3/10)*(3/9)*(4/8)*3!
(You multiply by 3! here because you could pick in some other order e.g. Bright, Bleft, G or Bleft, G, Bright etc)


Hi Karishma.
Sorry for replying to an old post. Please take some time and clarify my doubt.

In the above calculation why should we multiply with 3!, How is order important here?
while calculating (3/10)*(3/9)*(4/8) we already considered all the possible cominations. Please help! I am getting confused on this type of questions where order is important. Can you suggest some logic so that I can identify the need of considering the order?

Thanks,
Premasai
Expert Post
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4519
Location: Pune, India
Followers: 1013

Kudos [?]: 4330 [0], given: 161

Re: A box contains three pairs of blue gloves and two pairs of [#permalink] New post 25 Mar 2012, 23:29
Expert's post
pkonduri wrote:
VeritasPrepKarishma wrote:
arps wrote:
A box contains three pairs of blue gloves and two pairs of green gloves. Each pair consists of a left-hand glove and a right-hand glove. Each of the gloves is separate from its mate and thoroughly mixed together with the others in the box. If three gloves are randomly selected from the box, what is the probability that a matched set (i.e., a left- and right-hand glove of the same color) will be among the three gloves selected?

(A) 3/10
(B) 23/60
(C) 7/12
(D) 41/60
(E) 5/6

Bleft, Bright, G
Get a Bleft and Bright in (3/10)*(3/9) ways. Then get any green in 4/8 ways.
Probability of getting B pair and a G = (3/10)*(3/9)*(4/8)*3!
(You multiply by 3! here because you could pick in some other order e.g. Bright, Bleft, G or Bleft, G, Bright etc)


Hi Karishma.
Sorry for replying to an old post. Please take some time and clarify my doubt.

In the above calculation why should we multiply with 3!, How is order important here?
while calculating (3/10)*(3/9)*(4/8) we already considered all the possible cominations. Please help! I am getting confused on this type of questions where order is important. Can you suggest some logic so that I can identify the need of considering the order?

Thanks,
Premasai


One way in which you can get a pair is: Blue Left, Blue Right and any Green.
What is the probability that you will get this combination?
You can pick Blue Left (probability 3/10 because of the 10 gloves, only 3 are blue left), then you can pick Blue right (probability 3/9 because of the 9 remaining gloves, only 3 are blue right) and then you can pick any green (probability 4/8 because of the 8 remaining gloves, only 4 are green) Probability of this happening = (3/10)*(3/9)*(4/8)

Or
You can pick Blue Right (probability 3/10 because of the 10 gloves, only 3 are blue right), then you can pick Blue left (probability 3/9 because of the 9 remaining gloves, only 3 are blue left) and then you can pick any green (probability 4/8 because of the 8 remaining gloves, only 4 are green) Probability of this happening = (3/10)*(3/9)*(4/8)

Or
You can pick Green first (probability 4/10 because of the 10 gloves, only 4 are green), then you can pick Blue right (probability 3/9 because of the 9 remaining gloves, only 3 are blue right) and then you can pick blue left (probability 3/8 because of the 8 remaining gloves, only 3 are blue left) Probability of this happening = (4/10)*(3/9)*(3/8)

How many such cases will there be? 3! because you can arrange all 3 in 3! ways.
That is the reason you multiply by 3!
When you write just "(3/10)*(3/9)*(4/8)", you are considering only one of the possible 6 cases in which you could get Blue right, Blue left and green.

I have put up some posts on probability here:
http://www.veritasprep.com/blog/categor ... er-wisdom/

They might help you get better clarity.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
avatar
Joined: 04 Nov 2012
Posts: 70
Schools: NTU '16 (A)
Followers: 0

Kudos [?]: 9 [0], given: 39

Re: A box contains three pairs of blue gloves and two pairs of [#permalink] New post 28 Jun 2013, 23:21
Hi Karishma,

Could you please tell me how I'm going wrong?

Since there are 3 blue pairs and 2 green pairs, we have a total of 10 gloves.

I considered two cases:
Case 1: we have a blue pair match

This can be done if we have a blue left, a blue right and any other glove. So,
Since we have 3 blue lefts and 3 blue rights and a total of 10 gloves,

3C1*3C1*8C1- 3 ways of selecting a blue left, 3 for a blue right and any one glove of the remaining 8=72 ways.




Case 2: we have a green pair match,

SO, Gleft,Gright and any other glove,

2C1*2C1*8C1=32

Summing , we get 104

The total number of ways to select 3 gloves =10C3=120

so probability of getting a match=104/120 = 13/15.

Where am i going wrong?
Intern
Intern
avatar
Joined: 11 Sep 2013
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 16

Re: A box contains three pairs of blue gloves and two pairs of [#permalink] New post 17 Oct 2013, 15:58
12bhang wrote:
Hi Karishma,

Could you please tell me how I'm going wrong?

Since there are 3 blue pairs and 2 green pairs, we have a total of 10 gloves.

I considered two cases:
Case 1: we have a blue pair match

This can be done if we have a blue left, a blue right and any other glove. So,
Since we have 3 blue lefts and 3 blue rights and a total of 10 gloves,

3C1*3C1*8C1- 3 ways of selecting a blue left, 3 for a blue right and any one glove of the remaining 8=72 ways.




Case 2: we have a green pair match,

SO, Gleft,Gright and any other glove,

2C1*2C1*8C1=32

Summing , we get 104

The total number of ways to select 3 gloves =10C3=120

so probability of getting a match=104/120 = 13/15.

Where am i going wrong?


Same for me. Why doesn't that work for this question when it works for this for example:
[Reveal] Spoiler:
In a shipment of 20 cars, 3 are found to be defective. If four cars are selected at random, what is the probability that exactly one of the four will be defective?
Expert Post
2 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4519
Location: Pune, India
Followers: 1013

Kudos [?]: 4330 [2] , given: 161

Re: A box contains three pairs of blue gloves and two pairs of [#permalink] New post 17 Oct 2013, 20:32
2
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
12bhang wrote:
Hi Karishma,

Could you please tell me how I'm going wrong?

Since there are 3 blue pairs and 2 green pairs, we have a total of 10 gloves.

I considered two cases:
Case 1: we have a blue pair match

This can be done if we have a blue left, a blue right and any other glove. So,
Since we have 3 blue lefts and 3 blue rights and a total of 10 gloves,

3C1*3C1*8C1- 3 ways of selecting a blue left, 3 for a blue right and any one glove of the remaining 8=72 ways.


You are double counting here. Say the gloves are all distinct. The 3 blue left ones are Bl1, Bl2 and Bl3. Three blue right ones are Br1, Br2, Br3.
So you select one of the blue left ones and one of the blue right ones: Bl2, Br3.
Now you have 8 leftover and you can select any one of them. Say you select Bl1.
So your selection consists of Bl1, Bl2, Br3

Imagine another scenario:
So you select one of the blue left ones and one of the blue right ones: Bl1, Br3.
Now you have 8 leftover and you can select any one of them. Say you select Bl2.
So your selection consists of Bl1, Bl2, Br3

The two selections are the same but you have counted them as different selections.


12bhang wrote:
Case 2: we have a green pair match,

SO, Gleft,Gright and any other glove,

2C1*2C1*8C1=32

Summing , we get 104

The total number of ways to select 3 gloves =10C3=120

so probability of getting a match=104/120 = 13/15.

Where am i going wrong?


Same problem with the green pair.
From the solutions given above, review how to effectively use probability to solve this question.

In case you want to use combinations, you still have to take cases:

All three Blues:
3C2*3C1*2 = 18(Select 2 of the blue left and one of the blue right. Multiply by 2 because you can select 2 of the blue right and one of blue left too)

2 Blues, 1 Green:
3C1*3C1*4C1 = 36

2 Greens, 1 Blue
2C1*2C1*6C1 = 24

Three Greens
2C2*2C1*2 = 4

Total = 82

Select 3 gloves from 10 in 10C3 ways = 120

Probability = 82/120 = 41/60
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Intern
Intern
avatar
Joined: 06 May 2014
Posts: 9
GMAT Date: 07-22-2014
Followers: 0

Kudos [?]: 0 [0], given: 27

GMAT ToolKit User
A box contains three pairs of blue gloves [#permalink] New post 30 Jun 2014, 16:57
A box contains three pairs of blue gloves and two pairs of green gloves. Each pair consists of a left-hand
glove and a right-hand glove. Each of the gloves is separate from its mate and thoroughly mixed together
with the others in the box. If three gloves are randomly selected from the box, what is the probability that a
matched set (i.e., a left- and right-hand glove of the same color) will be among the three gloves selected?
(A) 3/10 (B) 23/60 (C) 7/12 (D) 41/60 (E) 5/6
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18515
Followers: 3196

Kudos [?]: 21381 [0], given: 2546

Re: A box contains three pairs of blue gloves and two pairs of [#permalink] New post 30 Jun 2014, 18:21
Expert's post
ayushee01 wrote:
A box contains three pairs of blue gloves and two pairs of green gloves. Each pair consists of a left-hand
glove and a right-hand glove. Each of the gloves is separate from its mate and thoroughly mixed together
with the others in the box. If three gloves are randomly selected from the box, what is the probability that a
matched set (i.e., a left- and right-hand glove of the same color) will be among the three gloves selected?
(A) 3/10 (B) 23/60 (C) 7/12 (D) 41/60 (E) 5/6


Merging similar topics. Please refer to the discussion above.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: A box contains three pairs of blue gloves and two pairs of   [#permalink] 30 Jun 2014, 18:21
    Similar topics Author Replies Last post
Similar
Topics:
A box contains three pairs of blue gloves ayushee01 0 30 Jun 2014, 16:57
Experts publish their posts in the topic What is the probability of a two pair in poker? alphabeta1234 3 25 Aug 2013, 16:08
11 Experts publish their posts in the topic Three pairs of siblings, each pair consisting of one girl EvaJager 9 05 Aug 2012, 03:32
10 Experts publish their posts in the topic A box contains 10 pairs of shoes (20 shoes in total). If two tejal777 15 28 Oct 2009, 00:08
25 Experts publish their posts in the topic There are 9 people in the room. There are two pairs of bmwhype2 22 17 Jan 2008, 06:10
Display posts from previous: Sort by

A box contains three pairs of blue gloves and two pairs of

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.