Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A certain bag of gemstones is composed of two-thirds [#permalink]
29 May 2006, 06:32

4

This post received KUDOS

5

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

65% (hard)

Question Stats:

60% (03:09) correct
40% (02:19) wrong based on 182 sessions

A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

Re: Challenge MHTNGMAT [#permalink]
29 May 2006, 08:03

1

This post received KUDOS

BG wrote:

A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4

is answer 1/12

2/3 * (2X-1) / (3X-1) = 5/ 12 => X = 3
So total gems = 9
and probability of ruby = 1/3 * 2/8 = 1/12

Re: Challenge MHTNGMAT [#permalink]
29 May 2006, 08:46

2

This post received KUDOS

guptaraja wrote:

BG wrote:

A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4

is answer 1/12

2/3 * (2X-1) / (3X-1) = 5/ 12 => X = 3 So total gems = 9 and probability of ruby = 1/3 * 2/8 = 1/12

Re: A certain bag of gemstones is composed of two-thirds [#permalink]
06 Feb 2013, 16:38

1

This post received KUDOS

BG wrote:

A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4

Let R be the numbers of rubies in the bag, we told that the selection is made without replacement in both cases ( selecting two diamonds or selecting two rubies)

Hence, we have : \(\frac{2}{3}*\frac{2R-1}{3R-1}=\frac{5}{12}\)

So, the number of diamonds in the bag is 6. Likewise, the number of rubies in the bag is 3 and the total of the gemstones is 9.

The probability of selecting two rubies from the bag without replacement is :

\(\frac{1}{3}*\frac{2}{8}=\frac{1}{12}\)

Answer : C _________________

KUDOS is the good manner to help the entire community.

"If you don't change your life, your life will change you"

Last edited by Rock750 on 09 Feb 2013, 18:23, edited 1 time in total.

Re: A certain bag of gemstones is composed of two-thirds [#permalink]
09 Feb 2013, 18:13

Rock750 wrote:

BG wrote:

A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4

Let R be the numbers of rubies in the bag, we told that the selection is made without replacement in both cases ( selecting two diamonds or selecting two rubies)

Hence, we have : \(\frac{2}{3}*\frac{2R-1}{3R-1}=\frac{5}{12}\)

So, the number of diamonds in the bag is 3. Likewise, the number of rubies in the bag is 6 and the total of the gemstones is 9.

The probability of selecting two rubies from the bag without replacement is :

\(\frac{1}{3}*\frac{2}{8}=\frac{1}{12}\)

Answer : C

Looks like you got your diamonds and rubies mixed up though you got it right later

Re: A certain bag of gemstones is composed of two-thirds [#permalink]
09 Feb 2013, 18:28

nave81 wrote:

Rock750 wrote:

BG wrote:

A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

(A) 5/36 (B) 5/24 (C) 1/12 (D) 1/6 (E) 1/4

Let R be the numbers of rubies in the bag, we told that the selection is made without replacement in both cases ( selecting two diamonds or selecting two rubies)

Hence, we have : \(\frac{2}{3}*\frac{2R-1}{3R-1}=\frac{5}{12}\)

So, the number of diamonds in the bag is 3. Likewise, the number of rubies in the bag is 6 and the total of the gemstones is 9.

The probability of selecting two rubies from the bag without replacement is :

\(\frac{1}{3}*\frac{2}{8}=\frac{1}{12}\)

Answer : C

Looks like you got your diamonds and rubies mixed up though you got it right later

u are right navy81, thx

Hope this silly mistake had not confused anyone. Anyway, i think it's OK by now _________________

KUDOS is the good manner to help the entire community.

"If you don't change your life, your life will change you"

Re: A certain bag of gemstones is composed of two-thirds [#permalink]
09 Jan 2014, 14:00

2

This post received KUDOS

BG wrote:

A certain bag of gemstones is composed of two-thirds diamonds and one-third rubies. If the probability of randomly selecting two diamonds from the bag, without replacement, is 5/12, what is the probability of selecting two rubies from the bag, without replacement?

Re: A certain bag of gemstones is composed of two-thirds [#permalink]
09 Jan 2014, 20:55

1

This post received KUDOS

Expert's post

b00gigi wrote:

Can someone explain the

2/3 * (2R-1)/(3R-1)

part?

Say, a bag has 6 diamonds and 3 rubies. What is the probability of selecting 2 diamonds one after the other without replacement?

Probability of selecting one diamond = 6/9 Probability of selecting yet another diamond after selecting one = 5/8 (no of diamonds has gone down by 1 and total no. of diamonds has gone down by 1 too) Total probability = (6/9)*(5/8)

Here, we assume that no of rubies is R and no of diamonds is 2R (since no of diamonds is twice the no of rubies) Probability of selecting two diamonds without replacement = (2R/3R) * (2R - 1)/(3R - 1) = 5/12 Either cross multiply to get the value of R or try to plug in some values to see where you get a multiple of 12 in the denominator. Once you get the value of R as 3, you know the number of diamonds is 6.

Probability of picking two rubies one after the other without replacement = (3/9) *(2/8) = 1/12 _________________

Re: A certain bag of gemstones is composed of two-thirds [#permalink]
03 Feb 2015, 08:56

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: A certain bag of gemstones is composed of two-thirds [#permalink]
03 Feb 2015, 21:53

Expert's post

Hi All,

We can solve this problem by TESTing VALUES. However, we have so much specific information, we CANNOT TEST random values. We have to use the information in the prompt to pick a logical number that matches all of the given "restrictions"

Here's what we have to work with: 1) Since the gems can be broken down into 2/3 diamonds and 1/3 rubies, the TOTAL must be a MULTIPLE of 3. 2) Since the probability of pulling 2 diamonds is 5/12, when we multiply the two individual probabilities, we MUST end with a denominator that is a multiple of 12 (so the fraction can be reduced to 5/12).

Let's start at "3" and work up....

If there are 3 gems, then we have 2 diamonds. The probability of pulling 2 diamonds is (2/3)(1/2) = 2/6 which is NOT a match.

If there are 6 gems, then we have 4 diamonds. The probability of pulling 2 diamonds is (4/6)(3/5) = 12/30.....30 cannot reduce to 12. This is NOT a match

If there are 9 gems, then we have 6 diamonds. The probability of pulling 2 diamonds is (6/9)(5/8) = 5/12...This IS a MATCH

So we have.... Total= 9 Diamonds = 6 Rubies = 3

The question asks for the probability of selecting 2 rubies....

The probability of selecting the first ruby = (3/9) The probability of selecting the second ruby = (2/8) (3/9)(2/8) = 6/72 = 1/12

Hello everyone! Researching, networking, and understanding the “feel” for a school are all part of the essential journey to a top MBA. Wouldn’t it be great... ...

Are you interested in applying to business school? If you are seeking advice about the admissions process, such as how to select your targeted schools, then send your questions...

A lot of readers have asked me what benefits the Duke MBA has brought me. The MBA is a huge upfront investment and the opportunity cost is high. Most...