Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A certain company assigns employees to offices in such a way [#permalink]
08 Jan 2010, 13:18

6

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

65% (hard)

Question Stats:

48% (02:02) correct
52% (01:16) wrong based on 172 sessions

A certain company assigns employees to offices in such a way that some of the offices can be empty and more than one employee can be assigned to an office. In how many ways can the company assign 3 employees to 2 different offices?

Re: A certain company [#permalink]
08 Jan 2010, 15:58

2

This post received KUDOS

Expert's post

sagarsabnis wrote:

A certain company assigns employees to offices in such a way that some of the offices can be empty and more than one employee can be assigned to an office. In how many ways can the company assign 3 employees to 2 different offices?

Re: A certain company [#permalink]
09 Jan 2010, 03:25

2

This post received KUDOS

Expert's post

sagarsabnis wrote:

i am still not able to understand. Can you please explain in detail?

also please tell me where i went wrong.This was my logic.

No. of people office 1: 0|0|0|1|1|1|2|2|3 office 2: 1|2|3|0|1|2|0|1|0

this gives me 9 possible combination

First of all you should assign ALL 3 employees to either of the offices. You can have the following scenarios:

No. of people ***********A|B|C|D| office 1: 0|1|2|3| office 2: 3|2|1|0|

In scenario (A) and (D) there is only one way to assign three people. But in (B) and (C) there will be 3 cases in each:

Let's say there are 3 employees: Tom, Mary and Kate. In (B): Tom can be in office #1 and Mary/Kate in #2 OR Mary can be in #1 and Tom/Kate in #2 OR Kate in #1 and Tom/Mary in #2. Total 3 cases for (B). The same for (C). (A)+(B)+(C)+(D)=1+3+3+1=8.

The way I solved this was different:

Each of the three employees, Tom, Mary and Kate, has two choices office #1 or office #2. Hence total # of combinations (assignments) is 2*2*2=2^3=8.

Re: A certain company employee [#permalink]
25 Oct 2010, 03:38

monirjewel wrote:

A certain company assigns employees to offices in such a way that some of the offices can be empty and more than one employee can be assigned to an office, In how many ways can the company assign 3 employees to 2 different offices?

A) 5 B) 6 C) 7 D) 8 E) 9

Every employee has got the possibilit of getting assigned to any of the two offices. Hence total possibilities = 2^3 = 8

Re: Why D any not B? please help me out [#permalink]
17 Nov 2010, 07:56

Expert's post

SoniaSaini wrote:

A certain company assigns employees to offices in such a way that some of the offices can be empty and more than one employee can be assigned to an office. In how many ways can the company assign 3 employees to 2 different offices? A. 5 B. 6 C. 7 D. 8 E. 9

thanks in advance!!!

For each one of the 3 employees, there are two choices. He can be allotted to any one of the two offices. Hence total number ways will be 2 * 2* 2 = 8 ways _________________

Re: A certain company assigns employees to offices in such a way [#permalink]
06 Jul 2013, 16:59

Thank you. Then, if the company assigns employees to offices in such a way that if the offices can not be empty and more than one employee can be assigned to an office. And we have 5 employees and 3 rooms, the answer would be:

120? I mean, 5! _________________

Encourage cooperation! If this post was very useful, kudos are welcome "It is our attitude at the beginning of a difficult task which, more than anything else, will affect It's successful outcome" William James

Re: A certain company assigns employees to offices in such a way [#permalink]
07 Jul 2013, 00:13

1

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

Maxirosario2012 wrote:

Thank you. Then, if the company assigns employees to offices in such a way that if the offices can not be empty and more than one employee can be assigned to an office. And we have 5 employees and 3 rooms, the answer would be:

120? I mean, 5!

No. It would be 3^5 minus restriction.

For example, for 5 employees and 2 offices it would be 2^5 - 2 ({5-0} and {0-5}). _________________

Re: A certain company assigns employees to offices in such a way [#permalink]
07 Jul 2013, 12:35

Thank you Bunuel! I have difficulties learning combinations, this is my weakest area in the GMAT. I am planning to practice all the combinations problems in the forum. Regarding the problem that I have posted before, I think that you mean:

\(3^5\) - the combinations in which zero is an element in the set and it cannot be zero in any of the slots, with the restrictions that the 3 elements must sum up 5): {(005),(014),(023),(032),(041) ; (050)(140),(230),(320),(410) ; (500),(104),(203),(302),(401)}

243 - 15 = 228

I tried to apply combinatorics formulas to this problem (because writing that set is very time consuming) but I could not figure it out. Translating the problem: I need to find the number of combinations of three digits in which at least one of the digits is "0", the sum of those three digits is 5 and the digits range from 0 to 5 (six elements). Then, substract this number from \(3^5\) _________________

Encourage cooperation! If this post was very useful, kudos are welcome "It is our attitude at the beginning of a difficult task which, more than anything else, will affect It's successful outcome" William James

Re: A certain company assigns employees to offices in such a way [#permalink]
10 Jul 2013, 11:40

Applying combinations I think would be in this way: \(C^4_1 * C^2_1 = 4*2 = 8\) _________________

Encourage cooperation! If this post was very useful, kudos are welcome "It is our attitude at the beginning of a difficult task which, more than anything else, will affect It's successful outcome" William James

Re: A certain company assigns employees to offices in such a way [#permalink]
31 Aug 2013, 06:47

ok, can someone tell me what's wrong with my thinking.. 1st office can have any 3 employees.. therefore 3 options, 2nd office can also have any of 3 employees hence again 3 options so it should be 3*3=9

i think the logic is similar to the way Bunuel did..the only difference is in that case we had 2 choices for each employee therefore it was 2*2*2=8.. but why is the answer different in both cases? _________________

Life is very similar to a boxing ring. Defeat is not final when you fall down… It is final when you refuse to get up and fight back!

Re: A certain company assigns employees to offices in such a way [#permalink]
03 Sep 2013, 05:42

Expert's post

nikhil007 wrote:

ok, can someone tell me what's wrong with my thinking.. 1st office can have any 3 employees.. therefore 3 options, 2nd office can also have any of 3 employees hence again 3 options so it should be 3*3=9

i think the logic is similar to the way Bunuel did..the only difference is in that case we had 2 choices for each employee therefore it was 2*2*2=8.. but why is the answer different in both cases?

We are distributing employees to the offices not vise-versa. _________________

Re: A certain company assigns employees to offices in such a way [#permalink]
15 Sep 2014, 18:24

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Hello everyone! Researching, networking, and understanding the “feel” for a school are all part of the essential journey to a top MBA. Wouldn’t it be great... ...

Are you interested in applying to business school? If you are seeking advice about the admissions process, such as how to select your targeted schools, then send your questions...