Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A certain theater has 100 balcony seats. For every $2 [#permalink]
28 Apr 2012, 20:39

1

This post received KUDOS

1

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

65% (hard)

Question Stats:

64% (02:53) correct
36% (02:35) wrong based on 196 sessions

A certain theater has 100 balcony seats. For every $2 increase in the price of a balcony seat above $10, 5 fewer seats will be sold. If all the balcony seats are sold when the price of each seat is $10, which of the following could be the price of a balcony seat if the revenue from the sale of balcony seats is $1,360 ?

Re: A certain theater has 100 balcony seats. For every $2 [#permalink]
29 Apr 2012, 03:51

3

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

boomtangboy wrote:

A certain theater has 100 balcony seats. For every $2 increase in the price of a balcony seat above $10, 5 fewer seats will be sold. If all the balcony seats are sold when the price of each seat is $10, which of the following could be the price of a balcony seat if the revenue from the sale of balcony seats is $1,360 ?

A. $12 B. $14 C. $16 D. $17 E. $18

I solved it as follows:

10+2(x) = 100 -5(x) x= 12

Why is my approach wrong?

Equation should be (10+$2*x)(100-5x)=1,360, where x is the # of times we increased the price by $2. (10+$2*x)(100-5x)=1,360 --> (5+x)(20-x)=136 --> x=3 or x=12 --> price=10+$2*3=$16 or price=10+$2*12=$34.

Answer: C.

But the easiest way to solve this problem would be to write down a chart: $10*100=$1,000; $12*95=$1,140; $14*90=$1,260; $16*85=$1,360.

Or do the other way around and plug the answer choices.

Re: A certain theater has 100 balcony seats. For every $2 [#permalink]
12 May 2012, 04:16

Bunuel wrote:

boomtangboy wrote:

A certain theater has 100 balcony seats. For every $2 increase in the price of a balcony seat above $10, 5 fewer seats will be sold. If all the balcony seats are sold when the price of each seat is $10, which of the following could be the price of a balcony seat if the revenue from the sale of balcony seats is $1,360 ?

A. $12 B. $14 C. $16 D. $17 E. $18

I solved it as follows:

10+2(x) = 100 -5(x) x= 12

Why is my approach wrong?

Equation should be (10+$2*x)(100-5x)=1,360, where x is the # of times we increased the price by $2. (10+$2*x)(100-5x)=1,360 --> (5+x)(20-x)=136 --> x=3 or x=12 --> price=10+$2*3=$16 or price=10+$2*12=$34.

Answer: C.

But the easiest way to solve this problem would be to write down a chart: $10*100=$1,000; $12*95=$1,140; $14*90=$1,260; $16*85=$1,360.

Or do the other way around and plug the answer choices.

Answer: C.

@Bunuel,

in this chart, $17*80 = 1360. why should we avoid 'D' as answer.?

Re: A certain theater has 100 balcony seats. For every $2 [#permalink]
12 May 2012, 10:56

Expert's post

kashishh wrote:

Bunuel wrote:

boomtangboy wrote:

A certain theater has 100 balcony seats. For every $2 increase in the price of a balcony seat above $10, 5 fewer seats will be sold. If all the balcony seats are sold when the price of each seat is $10, which of the following could be the price of a balcony seat if the revenue from the sale of balcony seats is $1,360 ?

A. $12 B. $14 C. $16 D. $17 E. $18

I solved it as follows:

10+2(x) = 100 -5(x) x= 12

Why is my approach wrong?

Equation should be (10+$2*x)(100-5x)=1,360, where x is the # of times we increased the price by $2. (10+$2*x)(100-5x)=1,360 --> (5+x)(20-x)=136 --> x=3 or x=12 --> price=10+$2*3=$16 or price=10+$2*12=$34.

Answer: C.

But the easiest way to solve this problem would be to write down a chart: $10*100=$1,000; $12*95=$1,140; $14*90=$1,260; $16*85=$1,360.

Or do the other way around and plug the answer choices.

Answer: C.

@Bunuel,

in this chart, $17*80 = 1360. why should we avoid 'D' as answer.?

We can have ONLY one correct answer, so if C is correct then D is automatically wrong.

Also, we are told that "for every $2 increase in the price 5 fewer seats will be sold" and from $16 to $17 there is only $1 increase, so you cannot write $17*80.

Re: A certain theater has 100 balcony seats. For every $2 [#permalink]
02 Jun 2013, 20:49

Hello Bunuel, I solved it the following way. Let me know if I am correct in the logic and the approach.

R1 = 1000; revenue when price per seat = $10 and no. of seats are 100 R2 = 1360; revenue when price increase every time by $2 and 5 lesser no of seats sold that every time.

Hence, for R2, x = no. of times price of each seat increase by $2 n = no. of times 5 lesser seats are sold when each time the price is increased by $2

Incremental revenue = $ 360

Now, essentially x = n (since everytime the price is increased, lesser no. of seats are sold) and this is attributed to the incremental revenue

the number of times the price is increased by $2 = 2x the number of times 5 lesser seats are sold = 5n

hence, 2x * 5n = 360 10xn = 360 xn = 36

now, as mentioned above, x = n hence x^2= 36 giving, x = + / - 6

x cannot be -6 since the price is increased, thus making x = 6

Re: A certain theater has 100 balcony seats. For every $2 [#permalink]
02 Jun 2013, 20:56

A certain theater has 100 balcony seats. For every $2 increase in the price of a balcony seat above $10, 5 fewer seats will be sold. If all the balcony seats are sold when the price of each seat is $10, which of the following could be the price of a balcony seat if the revenue from the sale of balcony seats is $1,360 ?

A. $12 B. $14 C. $16 D. $17 E. $18

I solved it as follows:

10+2(x) = 100 -5(x) x= 12

Equation should be (10+$2*x)(100-5x)=1,360, where x is the # of times we increased the price by $2. (10+$2*x)(100-5x)=1,360 --> (5+x)(20-x)=136 --> x=3 or x=12 --> price=10+$2*3=$16 or price=10+$2*12=$34.

Answer: C.

But the easiest way to solve this problem would be to write down a chart: $10*100=$1,000; $12*95=$1,140; $14*90=$1,260; $16*85=$1,360.

Or do the other way around and plug the answer choices.

Answer: C.[/quote]

Hello Bunuel, I solved it the following way. Let me know if I am correct in the logic and the approach.

R1 = 1000; revenue when price per seat = $10 and no. of seats are 100 R2 = 1360; revenue when price increase every time by $2 and 5 lesser no of seats sold that every time.

Hence, for R2, x = no. of times price of each seat increase by $2 n = no. of times 5 lesser seats are sold when each time the price is increased by $2

Incremental revenue = $ 360

Now, essentially x = n (since everytime the price is increased, lesser no. of seats are sold) and this is attributed to the incremental revenue

the number of times the price is increased by $2 = 2x the number of times 5 lesser seats are sold = 5n

hence, 2x * 5n = 360 10xn = 360 xn = 36

now, as mentioned above, x = n hence x^2= 36 giving, x = + / - 6

x cannot be -6 since the price is increased, thus making x = 6