Hi gmathopeful90,

The "restrictions" in the question are what dictate the math.

Consider these possible scenarios:

1) You have 5 different colors to choose from and two different rooms to paint. You can use the same color in both rooms. How many different color combinations are there for the two rooms?

Here, the first room could be 5 different colors and the second room could be 5 different colors, so (5)(5) = 5^2 = 25 options.

2) You have 5 different colors to choose from and two different rooms to paint. You CANNOT use the same color in both rooms. How many different color combinations are there for the two rooms?

Here, the first room could be 5 different colors; once you assign that first color, the second room could only be 4 different colors, so (5)(4) = 20 options.

3) You have 5 different colors to choose from. How many different 1-color and 2-color codes can you form with the following restrictions: the 2-color codes must use 2 DIFFERENT colors and the order of the colors does not matter (so blue-green is the SAME code as green-blue)?

Here, you start with the 5 different 1-color codes, then 5c2 different 2-color codes = 5 + 10 = 15 codes.

GMAT assassins aren't born, they're made,

Rich

_________________

Rich Cohen

Rich.C@empowergmat.com

http://www.empowergmat.com

EMPOWERgmat GMAT Club Page, Study Plans, & Discounts

http://gmatclub.com/blog/courses/empowergmat-discount/?fl=menu