Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A container in the shape of a right circular cylinder is 1/2 [#permalink]
16 Jul 2012, 03:40

Expert's post

5

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

15% (low)

Question Stats:

73% (02:23) correct
27% (01:23) wrong based on 432 sessions

A container in the shape of a right circular cylinder is 1/2 full of water. If the volume of water in the container is 36 cubic inches and the height of the container is 9 inches, what is the diameter of the base of the cylinder, in inches?

(A) \(\frac{16}{9\pi}\)

(B) \(\frac{4}{\pi}\)

(C) \(\frac{12}{\pi}\)

(D) \(\sqrt{\frac{2}{\pi}}\)

(E) \(4\sqrt{\frac{2}{\pi}}\)

Diagnostic Test Question: 22 Page: 23 Difficulty: 600

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
16 Jul 2012, 12:07

1

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

SOLUTION

A container in the shape of a right circular cylinder is 1/2 full of water. If the volume of water in the container is 36 cubic inches and the height of the container is 9 inches, what is the diameter of the base of the cylinder, in inches?

(A) \(\frac{16}{9\pi}\)

(B) \(\frac{4}{\pi}\)

(C) \(\frac{12}{\pi}\)

(D) \(\sqrt{\frac{2}{\pi}}\)

(E) \(4\sqrt{\frac{2}{\pi}}\)

Since 36 cubic inches of water occupy 1/2 of the cylinder, then the volume of the cylinder is 72 cubic inches.

So, we have that \(volume_{cylinder}=\pi*{r^2}*h=72\) --> \(\pi*{r^2}*9=72\) --> \(r^2=\frac{8}{\pi}\) --> \(r=\sqrt{\frac{8}{\pi}}=2*\sqrt{\frac{2}{\pi}}\). Hence the diameter equals \(2*(2*\sqrt{\frac{2}{\pi}})=4*\sqrt{\frac{2}{\pi}}\).

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
16 Jul 2012, 12:26

the answer is E.

The volume of the cylinder is = hr^2(Pie). If Half of the volume is equal to 36 than the full volume is 72. since h =9 divide 72/9(pie) u get r^2=8/Pie or r^2=(4*2)/pie. so r= 2*Sqrt(2/pie) Since 2r = diameter => diameter = 4*Sqrt(2/pie) _________________

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
20 Jul 2012, 02:27

Expert's post

SOLUTION

A container in the shape of a right circular cylinder is 1/2 full of water. If the volume of water in the container is 36 cubic inches and the height of the container is 9 inches, what is the diameter of the base of the cylinder, in inches?

(A) \(\frac{16}{9\pi}\)

(B) \(\frac{4}{\pi}\)

(C) \(\frac{12}{\pi}\)

(D) \(\sqrt{\frac{2}{\pi}}\)

(E) \(4\sqrt{\frac{2}{\pi}}\)

Since 36 cubic inches of water occupy 1/2 of the cylinder, then the volume of the cylinder is 72 cubic inches.

So, we have that \(volume_{cylinder}=\pi*{r^2}*h=72\) --> \(\pi*{r^2}*9=72\) --> \(r^2=\frac{8}{\pi}\) --> \(r=\sqrt{\frac{8}{\pi}}=2*\sqrt{\frac{2}{\pi}}\). Hence the diameter equals \(2*(2*\sqrt{\frac{2}{\pi}})=4*\sqrt{\frac{2}{\pi}}\).

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
29 Oct 2012, 02:46

Hi

Could someone simplify it. I don't get it.

What I understand so far is that the container is half full at 36 cubic = full 72 cubic Height of container is 9 inches = so container with half full is at 4.5 inches height...

72 = 9 36 = 4.5

after this I get stuck with the explanations that have been given....

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
29 Oct 2012, 02:52

Expert's post

DonCarter wrote:

Hi

Could someone simplify it. I don't get it.

What I understand so far is that the container is half full at 36 cubic = full 72 cubic Height of container is 9 inches = so container with half full is at 4.5 inches height...

72 = 9 36 = 4.5

after this I get stuck with the explanations that have been given....

Thanks

You don't need to for half-full container after you get that the volume of the whole container is 72 cubic inches.

We have that the volume is 72 cubic inches and the height is 9 inches --> \(volume_{cylinder}=\pi*{r^2}*h=72\) --> \(\pi*{r^2}*9=72\) --> \(r^2=\frac{8}{\pi}\) --> \(r=\sqrt{\frac{8}{\pi}}=2*\sqrt{\frac{2}{\pi}}\). Hence the diameter equals \(2*(2*\sqrt{\frac{2}{\pi}})=4*\sqrt{\frac{2}{\pi}}\).

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
29 Oct 2012, 04:49

Expert's post

Responding to a pm:

As I wrote in my post "you don't need to go back to half-full container after you get that the volume of the whole container is 72 cubic inches".

The volume of a cylinder is given by: \(volume_{cylinder}=\pi*{r^2}*h\). We know that it equals to 72 and its height is 9. Substitute these values to get \(\pi*{r^2}*9=72\) --> divide by 9: \(\pi*{r^2}=8\) --> divide by \(\pi\): \(r^2=\frac{8}{\pi}\) --> take the square root: \(r=\sqrt{\frac{8}{\pi}}=2*\sqrt{\frac{2}{\pi}}\). Diameter is twice the radius, thus \(d=2*(2*\sqrt{\frac{2}{\pi}})=4*\sqrt{\frac{2}{\pi}}\).

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
17 Dec 2013, 08:55

Bunuel wrote:

A container in the shape of a right circular cylinder is 1/2 full of water. If the volume of water in the container is 36 cubic inches and the height of the container is 9 inches, what is the diameter of the base of the cylinder, in inches?

(A) \(\frac{16}{9\pi}\)

(B) \(\frac{4}{\pi}\)

(C) \(\frac{12}{\pi}\)

(D) \(\sqrt{\frac{2}{\pi}}\)

(E) \(4\sqrt{\frac{2}{\pi}}\)

Diagnostic Test Question: 22 Page: 23 Difficulty: 600

They give us cubic inches ----> 36in^3 and then want us to find find a value that is in inches ---> in^1 .. Why are they not consistent? If they talk about cubic inches then they should also take the cubic root out on both sides... I don't get it.

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
17 Dec 2013, 08:58

Expert's post

aeglorre wrote:

Bunuel wrote:

A container in the shape of a right circular cylinder is 1/2 full of water. If the volume of water in the container is 36 cubic inches and the height of the container is 9 inches, what is the diameter of the base of the cylinder, in inches?

(A) \(\frac{16}{9\pi}\)

(B) \(\frac{4}{\pi}\)

(C) \(\frac{12}{\pi}\)

(D) \(\sqrt{\frac{2}{\pi}}\)

(E) \(4\sqrt{\frac{2}{\pi}}\)

Diagnostic Test Question: 22 Page: 23 Difficulty: 600

They give us cubic inches ----> 36in^3 and then want us to find find a value that is in inches ---> in^1 .. Why are they not consistent? If they talk about cubic inches then they should also take the cubic root out on both sides... I don't get it.

Volume is in cubic inches and the length is in inches. How can length be in cubic inches? _________________

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
17 Dec 2013, 12:25

Bunuel wrote:

aeglorre wrote:

Bunuel wrote:

A container in the shape of a right circular cylinder is 1/2 full of water. If the volume of water in the container is 36 cubic inches and the height of the container is 9 inches, what is the diameter of the base of the cylinder, in inches?

(A) \(\frac{16}{9\pi}\)

(B) \(\frac{4}{\pi}\)

(C) \(\frac{12}{\pi}\)

(D) \(\sqrt{\frac{2}{\pi}}\)

(E) \(4\sqrt{\frac{2}{\pi}}\)

Diagnostic Test Question: 22 Page: 23 Difficulty: 600

They give us cubic inches ----> 36in^3 and then want us to find find a value that is in inches ---> in^1 .. Why are they not consistent? If they talk about cubic inches then they should also take the cubic root out on both sides... I don't get it.

Volume is in cubic inches and the length is in inches. How can length be in cubic inches?

Wow, that is embarassing. Thanks for the heads up, Ill just blame it on mind fatigue!

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
17 Dec 2013, 13:01

A container in the shape of a right circular cylinder is 1/2 full of water. If the volume of water in the container is 36 cubic inches and the height of the container is 9 inches, what is the diameter of the base of the cylinder, in inches?

I've gotten this question wrong before and I'm still not 100% sure why it's solved the way it is.

If the container is 1/2 full of water and the volume of water is 36 when the total volume is twice that, or 72 inches.

V = pi * r^2 * h 72 = pi * r^2 * (9) 8 = pi * r^2 8/pi = r^2 √8 / √pi = r d = 2r d = 2(√8 / √pi) d = 2√8 / √pi d = (2 * √8 * √pi) / pi

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
18 Dec 2013, 00:59

Expert's post

WholeLottaLove wrote:

A container in the shape of a right circular cylinder is 1/2 full of water. If the volume of water in the container is 36 cubic inches and the height of the container is 9 inches, what is the diameter of the base of the cylinder, in inches?

I've gotten this question wrong before and I'm still not 100% sure why it's solved the way it is.

If the container is 1/2 full of water and the volume of water is 36 when the total volume is twice that, or 72 inches.

V = pi * r^2 * h 72 = pi * r^2 * (9) 8 = pi * r^2 8/pi = r^2 √8 / √pi = r d = 2r d = 2(√8 / √pi) d = 2√8 / √pi d = (2 * √8 * √pi) / pi

The red part can simplified: \(r=\sqrt{\frac{8}{\pi}}=\sqrt{\frac{4*2}{\pi}}=2*\sqrt{\frac{2}{\pi}}\). _________________

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
18 Dec 2013, 14:49

Ahh...simple mistake! Thanks!

quote="Bunuel"]

WholeLottaLove wrote:

A container in the shape of a right circular cylinder is 1/2 full of water. If the volume of water in the container is 36 cubic inches and the height of the container is 9 inches, what is the diameter of the base of the cylinder, in inches?

I've gotten this question wrong before and I'm still not 100% sure why it's solved the way it is.

If the container is 1/2 full of water and the volume of water is 36 when the total volume is twice that, or 72 inches.

V = pi * r^2 * h 72 = pi * r^2 * (9) 8 = pi * r^2 8/pi = r^2 √8 / √pi = r d = 2r d = 2(√8 / √pi) d = 2√8 / √pi d = (2 * √8 * √pi) / pi

The red part can simplified: \(r=\sqrt{\frac{8}{\pi}}=\sqrt{\frac{4*2}{\pi}}=2*\sqrt{\frac{2}{\pi}}\).[/quote]

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
19 Dec 2013, 03:14

I understand how it is done above. But can someone help me explain what is wrong with below - Given is a right circular cylinder, which is half full. V/2 = 36. Also height will be half i.e. 4.5 inches when the culinder is half full. Hence, (pi*r^2*4.5)/2 = 36. This gives radius = 4/sqrt(pi). This is wrong though.

I am not quite sure what is wrong with this. Can someone explain ?

Re: A container in the shape of a right circular cylinder is 1/2 [#permalink]
19 Dec 2013, 03:23

Expert's post

zerosleep wrote:

I understand how it is done above. But can someone help me explain what is wrong with below - Given is a right circular cylinder, which is half full. V/2 = 36. Also height will be half i.e. 4.5 inches when the culinder is half full. Hence, (pi*r^2*4.5)/2 = 36. This gives radius = 4/sqrt(pi). This is wrong though.

I am not quite sure what is wrong with this. Can someone explain ?

It should be \(\pi{r^2}*4.5=36\), no need to divide by 2, since you already accounted for half of the volume by dividing the height by 2.

Low GPA MBA Acceptance Rate Analysis Many applicants worry about applying to business school if they have a low GPA. I analyzed the low GPA MBA acceptance rate at...

In out-of-the-way places of the heart, Where your thoughts never think to wander, This beginning has been quietly forming, Waiting until you were ready to emerge. For a long...