Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A florist has 2 azaleas, 3 buttercups, and 4 petunias. She [#permalink]
22 Jan 2011, 08:25

2

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

55% (hard)

Question Stats:

68% (02:44) correct
32% (02:07) wrong based on 105 sessions

A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts two flowers together at random in a bouquet. However, the customer calls and says that she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet?

Re: Probability ..tough one [#permalink]
22 Jan 2011, 08:34

1

This post received KUDOS

Expert's post

3

This post was BOOKMARKED

ajit257 wrote:

A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts 2 flowers together at random in a bouquet. However customer calls and says she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet ?

Let's count the probability of the opposite event and subtract it from 1. Opposite event would be that the florist made a bouquet with two of the same flower: \(\frac{C^2_2+C^2_3+C^2_4}{C^2_{9}}=\frac{10}{36}\) --> \(P=1-\frac{10}{36}=\frac{26}{36}=\frac{13}{18}\)

Re: Probability ..tough one [#permalink]
05 Feb 2011, 09:21

1

This post received KUDOS

total possibilities of selecting 2 flowers from 9 = 9*8= 72 position doesn't matter i.e. {AB} & {BA} mean the same. so total cases = \(\frac{72}{2} = 36\)

Re: A florist has 2 azaleas, 3 buttercups, and 4 petunias. She [#permalink]
02 Sep 2014, 02:09

1

This post received KUDOS

Expert's post

arpshriv wrote:

A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts two flowers together at random in a bouquet. However, the customer calls and says that she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet?

Merging similar tropics. please refer to the discussion above.

Florist 2azaleas, 3 buttercups and 4 petunias [#permalink]
16 Nov 2012, 19:19

dimri10 wrote:

2 azaleas, 3 buttercups, and 4 petunias for total of 9: same flower: 2 azaleas- 2/9*1/8 of choosing the same flower. 3 buttercups- 3/9*2/8 4 petunias - 4/9*3/8 2/72+6/72+12/72=20/72 Probability to chhose the same flower.

we want the probability of not choosing so 1-20/72=52/72=26/36=13/18

Would someone please explain why do we multiply by 1/8, 2/8, 3/8?

A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts... [#permalink]
02 Sep 2015, 08:49

A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts two flowers together at random in a bouquet. However, the customer calls and says that she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet?

Answer:

1. Counting manually (by drawing a table) all possible combinations of bouquets with two same flowes 2. Counting all possible combinations of two flower bouquets by using anagram grid 3. Making probability fraction of amount of possible bouquets with 2 same flowers to all possible bouquets (two same flower and two different flower bouquets) 4. Subtracting upper probability fraction (something we have to exclude) from 1.

I don't understand the solution method being used here. I translated the question being asked as "what is the probability that the first two flower bouquet that the florist picked was NOT a bouquet of two same flowers, meaning what is the probability that the first two flower bouquet that the florist picked was either AB OR BP OR AP?". Basically I used probability tree to solve this but I got different answer : 13/36.

AB = One flower is Azalea AND second flower is Buttercup 2/9 x 3/8 = 1/12

OR

BP = one flower is buttercup and second is petunia 3/9 x 4/8 = 1/6

OR

AP = one flower is azalea and second is petunia 2/9 x 4/8 = 1/9

Re: A florist has 2 azaleas, 3 buttercups, and 4 petunias. She [#permalink]
02 Sep 2015, 08:56

Expert's post

MariaVorop wrote:

A florist has 2 azaleas, 3 buttercups, and 4 petunias. She puts two flowers together at random in a bouquet. However, the customer calls and says that she does not want two of the same flower. What is the probability that the florist does not have to change the bouquet?

Answer:

1. Counting manually (by drawing a table) all possible combinations of bouquets with two same flowes 2. Counting all possible combinations of two flower bouquets by using anagram grid 3. Making probability fraction of amount of possible bouquets with 2 same flowers to all possible bouquets (two same flower and two different flower bouquets) 4. Subtracting upper probability fraction (something we have to exclude) from 1.

I don't understand the solution method being used here. I translated the question being asked as "what is the probability that the first two flower bouquet that the florist picked was NOT a bouquet of two same flowers, meaning what is the probability that the first two flower bouquet that the florist picked was either AB OR BP OR AP?". Basically I used probability tree to solve this but I got different answer : 13/36.

AB = One flower is Azalea AND second flower is Buttercup 2/9 x 3/8 = 1/12

OR

BP = one flower is buttercup and second is petunia 3/9 x 4/8 = 1/6

OR

AP = one flower is azalea and second is petunia 2/9 x 4/8 = 1/9

Final answer = 1/12 + 1/6 + 1/9 = 13/36

How is my thinking wrong?

Merging similar tropics. Please refer to the discussion above.

A florist has 2 azaleas, 3 buttercups, and 4 petunias. She [#permalink]
18 Sep 2015, 02:58

Hi All, ,

This also one way to solve this, it takes maybe slightly longer. This approach is not efficient when dealing with larger "cases".

Azaleas = A Buttercups = B Petunias = B

Recap: For the florist to not change the bouquet, different flowers would have been picked. So, We need to find the probability of three different cases. P(AB)+P(AP) + P(BP).

On September 6, 2015, I started my MBA journey at London Business School. I took some pictures on my way from the airport to school, and uploaded them on...

When I was growing up, I read a story about a piccolo player. A master orchestra conductor came to town and he decided to practice with the largest orchestra...

I’ll start off with a quote from another blog post I’ve written : “not all great communicators are great leaders, but all great leaders are great communicators.” Being...