Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A grocer is storing soap boxes in cartons that measure 25 [#permalink]
03 Apr 2013, 06:33

00:00

A

B

C

D

E

Difficulty:

15% (low)

Question Stats:

77% (01:55) correct
23% (01:04) wrong based on 46 sessions

A grocer is storing soap boxes in cartons that measure 25 inches by 42 inches by 60 inches. If the measurement of each soap box is 7 inches by 6 inches by 5 inches, then what is the maximum number of soap boxes that can be placed in each carton?

Re: Soap boxes in a carton [#permalink]
03 Apr 2013, 06:43

deepri0812 wrote:

A grocer is storing soap boxes in cartons that measure 25 inches by 42 inches by 60 inches. If the measurement of each soap box is 7 inches by 6 inches by 5 inches, then what is the maximum number of soap boxes that can be placed in each carton?

A -210 B - 252 C - 280 D -300 E-420

Area of the box = 25*42*60=63000 Area of one soap = 7*6*5=210 Tot number = \frac{63000}{210}=300

You have to calculate the area of the box, then divide it by the area of one soap, and you ll find the number of soaps that will fit into the box D _________________

It is beyond a doubt that all our knowledge that begins with experience.

Re: Soap boxes in a carton [#permalink]
03 Apr 2013, 06:52

deepri0812 wrote:

A grocer is storing soap boxes in cartons that measure 25 inches by 42 inches by 60 inches. If the measurement of each soap box is 7 inches by 6 inches by 5 inches, then what is the maximum number of soap boxes that can be placed in each carton?

A -210 B - 252 C - 280 D -300 E-420

Please suggest the method to solve such problems.

Maximum number of soap boxes that can be placed in each carton = Volume of each carton/ volume of each box = (25*42*60)/(7*6*5)= 300(option D)

Re: Soap boxes in a carton [#permalink]
03 Apr 2013, 07:28

Zarrolou wrote:

deepri0812 wrote:

A grocer is storing soap boxes in cartons that measure 25 inches by 42 inches by 60 inches. If the measurement of each soap box is 7 inches by 6 inches by 5 inches, then what is the maximum number of soap boxes that can be placed in each carton?

A -210 B - 252 C - 280 D -300 E-420

Area of the box = 25*42*60=63000 Area of one soap = 7*6*5=210 Tot number = \frac{63000}{210}=300

You have to calculate the area of the box, then divide it by the area of one soap, and you ll find the number of soaps that will fit into the box D

Thanks Zarrolou for quick reply.

I am getting confused between volume approach as done by you and my thought process:

Think about lining up the dimensions of the small boxes along the dimensions of the carton so that you can fill the carton with no wasted space. Since one edge of the small box is 7 inches, that edge of the small boxes should be placed along the side of the carton that is 42 inches long, since 42 is the only dimension that can be divided by 7 evenly. Thus you can put six small boxes along that side, but if you do that 6*6 soap boxes will have width 36 which would be greater than 25 & will exceed the carton width. so how can we just divide the volume of the carton & the soap's volume.

Re: Soap boxes in a carton [#permalink]
03 Apr 2013, 08:20

I guess you are thinking too muck For example you say: "Since one edge of the small box is 7 inches, that edge of the small boxes should be placed along the side of the carton that is 42 inches long, since 42 is the only dimension that can be divided by 7 evenly." Are you sure? I mean, what you say isn't wrong, but is not correct either (if we want to answer this particular question). On a side of 42 you can place 6 soaps on their "7-side"(6*7=42) or 2 soaps on their "6-side" and 6 soaps on their "5 side"(6*2+6*5=42). You can also rotate those soaps... The correct approach is also the simplest in this case.

Hope it's clear _________________

It is beyond a doubt that all our knowledge that begins with experience.

Re: A grocer is storing soap boxes in cartons that measure 25 [#permalink]
16 Apr 2013, 08:24

The answer works in this case... what if the dimension of the soap box was 6 7 8... This approach would fail then? _________________

You've been walking the ocean's edge, holding up your robes to keep them dry. You must dive naked under, and deeper under, a thousand times deeper! - Rumi

Re: A grocer is storing soap boxes in cartons that measure 25 [#permalink]
16 Apr 2013, 08:50

I'm not convinced... need some experts to help here....

I think the final answer should also include some sort of surface area calculations as well.

Hear my logic out

you have a box which is 42 60 25.. The best way to fit the soap box is 7 6 8

So you are going to have an array of 42/7=6 by 60/6=10 = 60 boxes

Now in 25 8 can only go 3 times

So total no of boxes that can be filled is 60x3=180 _________________

You've been walking the ocean's edge, holding up your robes to keep them dry. You must dive naked under, and deeper under, a thousand times deeper! - Rumi

It’s been a long time, since I posted. A busy schedule at office and the GMAT preparation, fully tied up with all my free hours. Anyways, now I’m back...

Ah yes. Funemployment. The time between when you quit your job and when you start your MBA. The promised land that many MBA applicants seek. The break that every...

It is that time of year again – time for Clear Admit’s annual Best of Blogging voting. Dating way back to the 2004-2005 application season, the Best of Blogging...