Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
A manufacturer conducted a survey to determine how many peop [#permalink]
10 Dec 2010, 11:32
1
This post received KUDOS
7
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
15% (low)
Question Stats:
73% (01:43) correct
27% (00:45) wrong based on 291 sessions
A manufacturer conducted a survey to determine how many people buy products P and Q. What fraction of the people surveyed said that they buy neither product P nor product Q?
(1) 1/3 of the people surveyed said that they buy product P but not product Q. (2) 1/2 of the people surveyed said that they buy product Q.
A manufacturer conducted a survey to determine how many peop [#permalink]
10 Dec 2010, 12:01
7
This post received KUDOS
Expert's post
2
This post was BOOKMARKED
A manufacturer conducted a survey to determine how many people buy products P and Q. What fraction of the people surveyed said that they buy neither product P nor product Q?
You can solve this question with Venn diagram, matrix or as shown below.
{Total} = {buy P} + {buy Q} - {buy both P and Q} + {buy neither P nor Q}. Question: {buy neither P nor Q} / {Total} = ?
Take total to be equal to 6 (as it's a multiple of both 2 and 3)
(1) 1/3 of the people surveyed said that they buy product P but not product Q:
{buy P} - {buy both P and Q} = 1/3*6 = 2; 6 = {buy P} + {buy Q} - ({buy P} - 2) + {buy neither P nor Q} 4={buy Q} + {buy neither P nor Q}.
Not sufficient to get the ratio we need.
(2) 1/2 of the people surveyed said that they buy product Q:
{buy Q}=1/2*6=3. Not sufficient.
(1)+(2) 4={buy Q} + {buy neither P nor Q} and {buy Q} = 3; {buy neither P nor Q} = 1; {buy neither P nor Q}/{Total} = 1/6. Sufficient.
Re: Product P and Q [#permalink]
10 Dec 2010, 12:29
2
This post received KUDOS
This problem should be solved following way
There are 2 products "P" and "Q", and we have to answer what fraction of people do not select both the products.
Option 1- 1/3 of people select only P and not Q So, suppose we have 90 people responded to survey then 1/3 of 90 = 30 people select only product P But, this option does not tells us anything about Q, so not sufficient to answer the question.
Option 2- 1/2 people select product Q ....this includes people who selected inly product Q and people who selected both product P and Q i.e. P intersection Q Therefore if 90 people responded to survey 45 people selected product Q, but it does not tells us how many people select only product p
Now, it we combine the options it gives us value of A U B i.e if we have 90 people on the survey 30 selected product P and 45 selected product Q along with P intersection Q
Therefore P U Q = 30 + 45 = 75 Therefore (P U Q)' = 90 - 75 = 15 Hence fraction of people did not select any product = 15/90
Hence we get the answer by taking both the options together... hence answer "C"
Re: Product P and Q [#permalink]
10 Dec 2010, 13:09
i still dont understand.
lets take ur choices:
1. the total is 6. (1) means we have 2 ppl buy product P no Q. (2) means 3 ppl buy Q (mayb together with P also). i still cannot understand how u can figure out from that the area covered by both P+Q and by none. Im not sure what im missing, but as i see it, we can have ppl that buy both P+Q between none to 4 and it still wont make any logic problem with both sentences.
I guess im having hard time to understand why u chose to put the - {buy both P and Q} in minus and not plus. the total should be a sum of all groups together isnt it?
thanks a lot for all the time and help for both of u guys. _________________
Re: Product P and Q [#permalink]
10 Dec 2010, 14:22
6
This post received KUDOS
Expert's post
1
This post was BOOKMARKED
144144 wrote:
i still dont understand.
lets take ur choices:
1. the total is 6. (1) means we have 2 ppl buy product P no Q. (2) means 3 ppl buy Q (mayb together with P also). i still cannot understand how u can figure out from that the area covered by both P+Q and by none. Im not sure what im missing, but as i see it, we can have ppl that buy both P+Q between none to 4 and it still wont make any logic problem with both sentences.
I guess im having hard time to understand why u chose to put the - {buy both P and Q} in minus and not plus. the total should be a sum of all groups together isnt it?
thanks a lot for all the time and help for both of u guys.
Venn diagram makes this question MUCH easier:
Attachment:
untitled.PNG [ 7.28 KiB | Viewed 9484 times ]
First about the formula:{Total} = {buy P} + {buy Q} - {buy both P and Q} + {buy neither P nor Q}. Note that P={Only P}+{Both P&Q} and Q={Only Q}+{Both P&Q}. In {Total}={P}+{Q}-{Both P&Q}+{Neither P nor Q} we subtract {Both P&Q} as P and Q both contain this segment and thus in P+Q it's counted twice, so we should subtract it to count it only once.
Back to the question:
Again let's take total to be equal to 6: so 6=Green+Yellow+Blue+Grey. We need to get Grey/Total=Grey/6=?.
(1) 1/3 of the people surveyed said that they buy product P but not product Q --> Green=1/3*6=2. Not sufficient to get the ratio we need.
(2) 1/2 of the people surveyed said that they buy product Q --> Yellow+Blue=1/2*6=3. Not sufficient.
Re: Product P and Q [#permalink]
10 Dec 2010, 14:25
2
This post received KUDOS
144144 wrote:
I guess im having hard time to understand why u chose to put the - {buy both P and Q} in minus and not plus. the total should be a sum of all groups together isnt it?
thanks a lot for all the time and help for both of u guys.
Here's the equation:
True # of objects = (everyone in group 1) + (everyone in group 2) - (everyone in both groups) + people in neither group
You ask why we subtract everyone in both groups; it's because we've already counted those people twice!
If we break down the first two components
everyone in group 1 = (people only in group 1) + (people in both groups) everyone in group 2 = (people only in group 2) + (people in both groups)
you can see that we've counted "people in both groups" twice. Subbing into the original equation:
True # of objects = ((people only in group 1) + (people in both groups)) + ((people only in group 2) + (people in both groups)) - (everyone in both groups) + people in neither group
which is why we need to subtract "everyone in both groups" to end up only counting them once.
With the Venn Diagram it makes sense but writing it out algabreically I wouldn't be able to do it I would get as far as this and wouldn't know how to figure out both the only Q and both values. I think I am missing a simple implication of the 2nd statement and what affect it has.
Total= P + Q -both +neither 6= 2+ _________________
With the Venn Diagram it makes sense but writing it out algabreically I wouldn't be able to do it I would get as far as this and wouldn't know how to figure out both the only Q and both values. I think I am missing a simple implication of the 2nd statement and what affect it has.
Re: A manufacturer conducted a survey to determine how many peop [#permalink]
21 Sep 2014, 11:50
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: A manufacturer conducted a survey to determine how many peop [#permalink]
22 Jul 2015, 04:06
Bunuel wrote:
A manufacturer conducted a survey to determine how many people buy products P and Q. What fraction of the people surveyed said that they buy neither product P nor product Q?
You can solve this question with Venn diagram, matrix or as shown below.
{Total} = {buy P} + {buy Q} - {buy both P and Q} + {buy neither P nor Q}. Question: {buy neither P nor Q} / {Total} = ?
Take total to be equal to 6 (as it's a multiple of both 2 and 3)
(1) 1/3 of the people surveyed said that they buy product P but not product Q --> {buy P} - {buy both P and Q}=1/3*6=2 --> 6 = {buy P} + {buy Q} - ({buy P} - 2) + {buy neither P nor Q} --> 4={buy Q} + {buy neither P nor Q}. Not sufficient to get the ratio we need.
(2) 1/2 of the people surveyed said that they buy product Q --> {buy Q}=1/2*6=3. Not sufficient.
(1)+(2) 4={buy Q} + {buy neither P nor Q} and {buy Q}=3 --> {buy neither P nor Q}=1 --> {buy neither P nor Q}/{Total}=1/6. Sufficient.
Answer: C.
i could solve the que with help of ven dia. but i am unable to understand the highlighted portion of explanation. pls help.
Re: A manufacturer conducted a survey to determine how many peop [#permalink]
22 Jul 2015, 04:45
Expert's post
riyazgilani wrote:
Bunuel wrote:
A manufacturer conducted a survey to determine how many people buy products P and Q. What fraction of the people surveyed said that they buy neither product P nor product Q?
You can solve this question with Venn diagram, matrix or as shown below.
{Total} = {buy P} + {buy Q} - {buy both P and Q} + {buy neither P nor Q}. Question: {buy neither P nor Q} / {Total} = ?
Take total to be equal to 6 (as it's a multiple of both 2 and 3)
(1) 1/3 of the people surveyed said that they buy product P but not product Q --> {buy P} - {buy both P and Q}=1/3*6=2 --> 6 = {buy P} + {buy Q} - ({buy P} - 2) + {buy neither P nor Q} --> 4={buy Q} + {buy neither P nor Q}. Not sufficient to get the ratio we need.
(2) 1/2 of the people surveyed said that they buy product Q --> {buy Q}=1/2*6=3. Not sufficient.
(1)+(2) 4={buy Q} + {buy neither P nor Q} and {buy Q}=3 --> {buy neither P nor Q}=1 --> {buy neither P nor Q}/{Total}=1/6. Sufficient.
Answer: C.
i could solve the que with help of ven dia. but i am unable to understand the highlighted portion of explanation. pls help.
{Total} = {buy P} + {buy Q} - {buy both P and Q} + {buy neither P nor Q}.
From (1): {buy P} - {buy both P and Q} = 1/3*6 = 2, so {buy both P and Q} = {buy P} - 2.
Substitute in above: 6 = {buy P} + {buy Q} - ({buy P} - 2) + {buy neither P nor Q} _________________
Re: A manufacturer conducted a survey to determine how many peop [#permalink]
05 Sep 2015, 08:59
vyassaptarashi wrote:
This problem should be solved following way
There are 2 products "P" and "Q", and we have to answer what fraction of people do not select both the products.
Option 1- 1/3 of people select only P and not Q So, suppose we have 90 people responded to survey then 1/3 of 90 = 30 people select only product P But, this option does not tells us anything about Q, so not sufficient to answer the question.
Option 2- 1/2 people select product Q ....this includes people who selected inly product Q and people who selected both product P and Q i.e. P intersection Q Therefore if 90 people responded to survey 45 people selected product Q, but it does not tells us how many people select only product p
Now, it we combine the options it gives us value of A U B i.e if we have 90 people on the survey 30 selected product P and 45 selected product Q along with P intersection Q
Therefore P U Q = 30 + 45 = 75 Therefore (P U Q)' = 90 - 75 = 15 Hence fraction of people did not select any product = 15/90
Hence we get the answer by taking both the options together... hence answer "C"
I find this solution WAY more intuitive, big thanks _________________
A manufacturer conducted a survey to determine how many peop [#permalink]
05 Sep 2015, 21:52
Expert's post
Forget conventional ways of solving math questions. In DS, Variable approach is
the easiest and quickest way to find the answer without actually solving the
problem. Remember equal number of variables and equations ensures a solution.
A manufacturer conducted a survey to determine how many people buy products P and Q. What fraction of the people surveyed said that they buy neither product P nor product Q?
(1) 1/3 of the people surveyed said that they buy product P but not product Q. (2) 1/2 of the people surveyed said that they buy product Q.
==> this is a common 2by2 question in GMAT tests that we use variable approach method to solve.
as we can see from above, the original condition is asking for d and since we have 4 variables (a,b,c,d), we need 4 equations to match the number of variables and equations. Since we have 1 each in 1) and 2), E is likely the answer. Using both 1) and 2) together, c=1/3 and a+b=1/2 thus we have c+d=1/2. substituting c=1/3 gives us d=1/6, therefore the answer is C. Here we were able to find the answer, but normally for 90% of these questions with 4 variables the the answer is E. This case was a special case.
Attachments
GC DS 144144 A manufacture conducted (20150905).jpg [ 23.75 KiB | Viewed 1717 times ]
Re: A manufacturer conducted a survey to determine how many peop [#permalink]
08 Dec 2015, 01:12
Bunuel wrote:
A manufacturer conducted a survey to determine how many people buy products P and Q. What fraction of the people surveyed said that they buy neither product P nor product Q?
You can solve this question with Venn diagram, matrix or as shown below.
{Total} = {buy P} + {buy Q} - {buy both P and Q} + {buy neither P nor Q}. Question: {buy neither P nor Q} / {Total} = ?
Take total to be equal to 6 (as it's a multiple of both 2 and 3)
(1) 1/3 of the people surveyed said that they buy product P but not product Q:
{buy P} - {buy both P and Q} = 1/3*6 = 2; 6 = {buy P} + {buy Q} - ({buy P} - 2) + {buy neither P nor Q} 4={buy Q} + {buy neither P nor Q}.
Not sufficient to get the ratio we need.
(2) 1/2 of the people surveyed said that they buy product Q:
{buy Q}=1/2*6=3. Not sufficient.
(1)+(2) 4={buy Q} + {buy neither P nor Q} and {buy Q} = 3; {buy neither P nor Q} = 1; {buy neither P nor Q}/{Total} = 1/6. Sufficient.
Answer: C.
Hi Bunuel,
I have a query on st1.
1/3 of the people surveyed said that they buy product P but not product Q
can we infer from above statement 2/3 of people surveyed said they buy product P and product Q.
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...
Ninety-five percent of the Full-Time Class of 2015 received an offer by three months post-graduation, as reported today by Kellogg’s Career Management Center(CMC). Kellogg also saw an increase...