Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A newer machine, working alone at its constant rate [#permalink]
26 Oct 2013, 13:42

2

This post received KUDOS

14

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

95% (hard)

Question Stats:

27% (02:00) correct
73% (02:08) wrong based on 327 sessions

A newer machine, working alone at its constant rate, can fill a production order in half the time required by two older machines working together at their constant rates. If the three machines are used together, will they require more than 1 hour to fill a production order?

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour

Re: A newer machine, working alone at its constant rate [#permalink]
26 Oct 2013, 13:43

2

This post received KUDOS

Hi Bunuel, Could you please help on the below -

This is from Veritas practice test . I got the answer as "A", but as per veritas , the answer is E . Not sure where I went wrong . Appreciate if experts can comment on this.

Let A and B , be old machines and C be the new machine .

----------- Rate -------------Tiime------------- Work A -----------x --------------1/x------------------ 1

B ------------y --------------1/y--------------------1

C -----------2(x+y)---------1/2(x+y)------------ 1

combined rate of two old and one new machine is = (x+y)+2(x+y) = 3(x+y) question : is time taken - i.e 1/3(x+y) >1 ? or (x+y) <1/3 ?

Statement 1 :- (1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

1/x <4 and 1/y <4 x>1/4 and y>1/4

hence x+y>1/2 , which answers our question as "No" x+y is not less than 1/3 Sufficient.

Statement 2 :- (2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour 4(x+y) is the new rate . 1/4(x+y) <1 , hence (x+y) >1/4 . Hence (x+y)<1/3 may or may not be true. Not sufficient.

I do not understand , where is it that I am going wrong on this one .

-Jyothi _________________

Jyothi hosamani

Last edited by gmacforjyoab on 27 Oct 2013, 07:35, edited 2 times in total.

Re: A newer machine, working alone at its constant rate [#permalink]
26 Oct 2013, 17:04

1

This post was BOOKMARKED

Let x, y be the time for 2 old machines to complete the job and z be the time for the newest machine to complete the same job. When 2 old machine working together, they finish the job in \(\frac{1}{\frac{1}{x}+ \frac{1}{y}} = \frac{xy}{x+y}\). So \(z= \frac{xy}{2(x+y)}\). (1) implies that x<8 and y<8. So z<2. If all three machines work together, the time \(\frac{1}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}\) is less than 4/3. (2) implies that z< 2. Similarly, If all three machines work together, the time is less than 4/3. Answer is E

Re: A newer machine, working alone at its constant rate [#permalink]
27 Oct 2013, 04:16

3

This post received KUDOS

gmacforjyoab wrote:

Hi Bunuel, Could you please help on the below -

This is from Veritas practice test . I got the answer as "A", but as per veritas , the answer is E . Not sure where I went wrong . Appreciate if experts can comment on this.

Let A and B , be old machines and C be the new machine .

----------- Rate -------------Tiime------------- Work A -----------x --------------1/x------------------ 1

B ------------y --------------1/y--------------------1

C -----------2(x+y)---------1/2(x+y)------------ 1

combined rate of two old and one new machine is = (x+y)=2(x+y) = 3(x+y) question : is time taken - i.e 1/3(x+y) >1 ? or (x+y) <1/3 ?

Statement 1 :- (1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

1/x <4 and 1/y <4 x>1/4 and y>1/4

hence x+y>1/2 , which answers our question as "No" x+y is not less than 1/3 Sufficient.

Statement 2 :- (2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour 4(x+y) is the new rate . 1/4(x+y) <1 , hence (x+y) >1/4 . Hence (x+y)<1/3 may or may not be true. Not sufficient.

I do not understand , where is it that I am going wrong on this one .

-Jyothi

the analysis of the argument is wrongly done.

If Old m/c takes T time to complete the work, then the newer one will take T/2

so the equation for combined work will look like:

2/T(for new m/c)+ 2/T(for 2 old m/c)=4/T

Now the asked ques is-weather 4/T>1 or not?

which can be answered using both the given statements....

Re: A newer machine, working alone at its constant rate [#permalink]
27 Oct 2013, 07:28

himang wrote:

gmacforjyoab wrote:

Hi Bunuel, Could you please help on the below -

This is from Veritas practice test . I got the answer as "A", but as per veritas , the answer is E . Not sure where I went wrong . Appreciate if experts can comment on this.

Let A and B , be old machines and C be the new machine .

----------- Rate -------------Tiime------------- Work A -----------x --------------1/x------------------ 1

B ------------y --------------1/y--------------------1

C -----------2(x+y)---------1/2(x+y)------------ 1

combined rate of two old and one new machine is = (x+y)=2(x+y) = 3(x+y) question : is time taken - i.e 1/3(x+y) >1 ? or (x+y) <1/3 ?

Statement 1 :- (1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

1/x <4 and 1/y <4 x>1/4 and y>1/4

hence x+y>1/2 , which answers our question as "No" x+y is not less than 1/3 Sufficient.

Statement 2 :- (2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour 4(x+y) is the new rate . 1/4(x+y) <1 , hence (x+y) >1/4 . Hence (x+y)<1/3 may or may not be true. Not sufficient.

I do not understand , where is it that I am going wrong on this one .

-Jyothi

the analysis of the argument is wrongly done.

If Old m/c takes T time to complete the work, then the newer one will take T/2

so the equation for combined work will look like:

2/T(for new m/c)+ 2/T(for 2 old m/c)=4/T

Now the asked ques is-weather 4/T>1 or not?

which can be answered using both the given statements....

Couple of issues in what you have explained above.

1. You cannot assume that time required for both the old machines is the same ( which you have assumed to be T). The problem just says , "work at THEIR CONSTANT RATE" .

2. Secondly , you can add the rates of three machines working together , which gives you a combined rate. But you cannot add the time taken by three machines and call that the combined time . for instance - Lets say Machine L takes 2 hrs , M takes 2 hrs and N takes 2 hrs to complete a work independently. If they all work together , then as per your analysis , they take 2+2+2=6 hrs to complete . If they all work together , they would definitely complete it in less than 2 hrs.

3. Also, the answer to the question , from what veritas says , is E and not C/D as you mentioned.

Re: A newer machine, working alone at its constant rate [#permalink]
27 Oct 2013, 20:23

gmacforjyoab wrote:

A newer machine, working alone at its constant rate, can fill a production order in half the time required by two older machines working together at their constant rates. If the three machines are used together, will they require more than 1 hour to fill a production order?

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour

Hi jyothi,

I think picking up few nos for each statements is perhaps the fastest way to do this.Before doing this assume x+y is time taken by older machines and z by new machine

1)for 1st statement the older machines can fill the order in less than 4 hours , take for instance the time taken by 2 older machines be 6 hours, so half-the production order will be in x+y/2=3 hours

time taken by new machine is 3 hours,

so in 6 hours 1.5 production order is filled => 1 production order in= 6/1.5= 4 hours (so answer to the statement is no)

but let us assume time taken by older machines x+y=1/4 hours

so half the prod order = 1/4*1/2=1/8

and z takes (1/4*1/2)=1/8

so in 1/4 hours 1.5 orders

1 prod order in 1/4*1/1.5 (which will be less than 1 hour, so answer is yes)

clearly therefore statment 1 is insufficient so

2)for the answer to be yes (i,e statement sufficient to state it will take less than 1hour you can pick the same values as in 2 conditio of 1st statement i,e x+y=1/2 hours)

for the yes condition pick time taken by z = 10/6 ,, so if rate doubled it will be able to do in 5/6 hours,, so x+y= 20/6 so in 30/6 2 orders are completed,

=> 1 order in 5/2 hours (so answer is no as order cannot be completed in less than in 1 hour),, you can have the same value (z=10/6) and use it for statemet 1 as well.

hence both the values are insufficient.E is correct _________________

Re: A newer machine, working alone at its constant rate [#permalink]
06 Nov 2013, 19:55

1

This post received KUDOS

Expert's post

gmacforjyoab wrote:

Hi Bunuel, Could you please help on the below -

This is from Veritas practice test . I got the answer as "A", but as per veritas , the answer is E . Not sure where I went wrong . Appreciate if experts can comment on this.

Let A and B , be old machines and C be the new machine .

----------- Rate -------------Tiime------------- Work A -----------x --------------1/x------------------ 1

B ------------y --------------1/y--------------------1

C -----------2(x+y)---------1/2(x+y)------------ 1

combined rate of two old and one new machine is = (x+y)+2(x+y) = 3(x+y) question : is time taken - i.e 1/3(x+y) >1 ? or (x+y) <1/3 ?

Statement 1 :- (1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

1/x <4 and 1/y <4 x>1/4 and y>1/4

hence x+y>1/2 , which answers our question as "No" x+y is not less than 1/3 Sufficient.

Statement 2 :- (2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour 4(x+y) is the new rate . 1/4(x+y) <1 , hence (x+y) >1/4 . Hence (x+y)<1/3 may or may not be true. Not sufficient.

I do not understand , where is it that I am going wrong on this one .

-Jyothi

You misread statement (1).

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours. Each of the older machines cannot fill a production order in less than 4 hrs. They can fill half the production order in less than 4 hrs. The actual time taken by them could be 1 hr, 2 hrs, 3 hrs, 3.9 hrs etc to fill HALF the order. Hence they can fill the complete order is less than 8 hrs.

1/x < 8 1/y < 8 x + y > 1/4 Not sufficient. _________________

Re: A newer machine, working alone at its constant rate [#permalink]
07 Nov 2013, 05:51

VeritasPrepKarishma wrote:

gmacforjyoab wrote:

Hi Bunuel, Could you please help on the below -

This is from Veritas practice test . I got the answer as "A", but as per veritas , the answer is E . Not sure where I went wrong . Appreciate if experts can comment on this.

Let A and B , be old machines and C be the new machine .

----------- Rate -------------Tiime------------- Work A -----------x --------------1/x------------------ 1

B ------------y --------------1/y--------------------1

C -----------2(x+y)---------1/2(x+y)------------ 1

combined rate of two old and one new machine is = (x+y)+2(x+y) = 3(x+y) question : is time taken - i.e 1/3(x+y) >1 ? or (x+y) <1/3 ?

Statement 1 :- (1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

1/x <4 and 1/y <4 x>1/4 and y>1/4

hence x+y>1/2 , which answers our question as "No" x+y is not less than 1/3 Sufficient.

Statement 2 :- (2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour 4(x+y) is the new rate . 1/4(x+y) <1 , hence (x+y) >1/4 . Hence (x+y)<1/3 may or may not be true. Not sufficient.

I do not understand , where is it that I am going wrong on this one .

-Jyothi

You misread statement (1).

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours. Each of the older machines cannot fill a production order in less than 4 hrs. They can fill half the production order in less than 4 hrs. The actual time taken by them could be 1 hr, 2 hrs, 3 hrs, 3.9 hrs etc to fill HALF the order. Hence they can fill the complete order is less than 8 hrs.

Re: A newer machine, working alone at its constant rate [#permalink]
17 Nov 2014, 13:16

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Machines, work/rate problem [#permalink]
28 Jan 2015, 13:03

A newer machine, working alone at its constant rate, can fill a production order in half the time required by two older machines working together at their constant rates. If the three machines are used together, will they require more than 1 hour to fill a production order?

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour

Re: A newer machine, working alone at its constant rate [#permalink]
29 Jan 2015, 03:51

Expert's post

santorasantu wrote:

A newer machine, working alone at its constant rate, can fill a production order in half the time required by two older machines working together at their constant rates. If the three machines are used together, will they require more than 1 hour to fill a production order?

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour

Re: A newer machine, working alone at its constant rate [#permalink]
29 Jan 2015, 12:19

Bunuel wrote:

santorasantu wrote:

A newer machine, working alone at its constant rate, can fill a production order in half the time required by two older machines working together at their constant rates. If the three machines are used together, will they require more than 1 hour to fill a production order?

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour

Re: A newer machine, working alone at its constant rate [#permalink]
29 Jan 2015, 21:46

1

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

gmacforjyoab wrote:

A newer machine, working alone at its constant rate, can fill a production order in half the time required by two older machines working together at their constant rates. If the three machines are used together, will they require more than 1 hour to fill a production order?

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour

Here is another solution:

New machine takes half the time taken by 2 old machines i.e. rate of new machine is twice the rate of 2 old machines. Say rate of old machine is R. Then rate of 2 old machines is 2R. Then rate of a new machine is 2*2R = 4R. If all 3 machines work together, their combined rate is R + R + 4R = 6R

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours. This means the old machine takes less than 8 hrs to fill a complete order i.e. its rate is at least 1/8. R is at least 1/8 so 6R is atleast 6/8 = 3/4. So time taken by all 3 machines together to complete 1 lot is maximum 4/3 hrs. Is it actually less than 1 hr, we can't say. Not sufficient.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour If rate is 2*4R =8R, time taken is less than 1 hour to complete 1 full production lot. So rate is at least 1/8. This is exactly the same information as obtained in statement 1. This alone will also be insufficient.

Both statements give the same information and are insufficient. So together they will be insufficient.

Re: A newer machine, working alone at its constant rate [#permalink]
30 Jan 2015, 10:37

VeritasPrepKarishma wrote:

gmacforjyoab wrote:

A newer machine, working alone at its constant rate, can fill a production order in half the time required by two older machines working together at their constant rates. If the three machines are used together, will they require more than 1 hour to fill a production order?

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour

Here is another solution:

New machine takes half the time taken by 2 old machines i.e. rate of new machine is twice the rate of 2 old machines. Say rate of old machine is R. Then rate of 2 old machines is 2R. Then rate of a new machine is 2*2R = 4R. If all 3 machines work together, their combined rate is R + R + 4R = 6R

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours. This means the old machine takes less than 8 hrs to fill a complete order i.e. its rate is at least 1/8. R is at least 1/8 so 6R is atleast 6/8 = 3/4. So time taken by all 3 machines together to complete 1 lot is maximum 4/3 hrs. Is it actually less than 1 hr, we can't say. Not sufficient.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour If rate is 2*4R =8R, time taken is less than 1 hour to complete 1 full production lot. So rate is at least 1/8. This is exactly the same information as obtained in statement 1. This alone will also be insufficient.

Both statements give the same information and are insufficient. So together they will be insufficient.

Answer (E)

Thanks a lot, Karishma. I find this a bit more easier. +1

A newer machine, working alone at its constant rate [#permalink]
22 May 2015, 19:55

1

This post received KUDOS

gmacforjyoab wrote:

A newer machine, working alone at its constant rate, can fill a production order in half the time required by two older machines working together at their constant rates. If the three machines are used together, will they require more than 1 hour to fill a production order?

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour

Let's call the two old machines A and B and new machine C.

Q: 1/A + 1/B + 1/C =< 1

(1) 0.5/A =< 0.5/4 or 1/A =< 1/8 0.5/B =< 0.5/4 or 1/B =< 1/8

Hence, 1/A + 1/B =< 1/8 + 1/8 =< 1/4

The Q tells us that C can fill the entire order is 1/2 the combined time of A and B:

1/C =< 2*(1/4) =< 1/2 (This means that C alone could fill the entire order in less than 2 hours)

All together, this information is insufficient because it doesn't tell us how less than 2 hours C alone can work or how less than 4 hours A and B can work combined. Therefore, we can't determine if all three together could fill the order in under 1 hour.

(2)

This tells us 1/2C =< 1... or 1/C =< 1/2 (the same information we had in 1). Still insufficient.

A newer machine, working alone at its constant rate [#permalink]
22 Jul 2015, 11:11

VeritasPrepKarishma wrote:

gmacforjyoab wrote:

A newer machine, working alone at its constant rate, can fill a production order in half the time required by two older machines working together at their constant rates. If the three machines are used together, will they require more than 1 hour to fill a production order?

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour

Here is another solution:

New machine takes half the time taken by 2 old machines i.e. rate of new machine is twice the rate of 2 old machines. Say rate of old machine is R. Then rate of 2 old machines is 2R. Then rate of a new machine is 2*2R = 4R. If all 3 machines work together, their combined rate is R + R + 4R = 6R

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours. This means the old machine takes less than 8 hrs to fill a complete order i.e. its rate is at least 1/8. R is at least 1/8 so 6R is atleast 6/8 = 3/4. So time taken by all 3 machines together to complete 1 lot is maximum 4/3 hrs. Is it actually less than 1 hr, we can't say. Not sufficient.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour If rate is 2*4R =8R, time taken is less than 1 hour to complete 1 full production lot. So rate is at least 1/8. This is exactly the same information as obtained in statement 1. This alone will also be insufficient.

Both statements give the same information and are insufficient. So together they will be insufficient.

Answer (E)

Hi there Karishma,

Nice solution, I have a doubt since the statement 1: says each of the old machines completed half the production in less than 4 hours , I took a case where the machines finish their job in a matter of minutes thus the total time for all three will be less than 60 minutes or 1 hr here and an extreme case as you did. Hence I concluded insufficient. Is this correct ?? I took a similar approach for statement 2.

Re: A newer machine, working alone at its constant rate [#permalink]
23 Jul 2015, 01:12

1

This post received KUDOS

Expert's post

anurag356 wrote:

VeritasPrepKarishma wrote:

gmacforjyoab wrote:

A newer machine, working alone at its constant rate, can fill a production order in half the time required by two older machines working together at their constant rates. If the three machines are used together, will they require more than 1 hour to fill a production order?

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour

Here is another solution:

New machine takes half the time taken by 2 old machines i.e. rate of new machine is twice the rate of 2 old machines. Say rate of old machine is R. Then rate of 2 old machines is 2R. Then rate of a new machine is 2*2R = 4R. If all 3 machines work together, their combined rate is R + R + 4R = 6R

(1) Each of the older machines, working alone at its constant rate, can fill half a production order in less than 4 hours. This means the old machine takes less than 8 hrs to fill a complete order i.e. its rate is at least 1/8. R is at least 1/8 so 6R is atleast 6/8 = 3/4. So time taken by all 3 machines together to complete 1 lot is maximum 4/3 hrs. Is it actually less than 1 hr, we can't say. Not sufficient.

(2) If the newer machine were to double its rate, it could fill a production order working alone in less than one hour If rate is 2*4R =8R, time taken is less than 1 hour to complete 1 full production lot. So rate is at least 1/8. This is exactly the same information as obtained in statement 1. This alone will also be insufficient.

Both statements give the same information and are insufficient. So together they will be insufficient.

Answer (E)

Hi there Karishma,

Nice solution, I have a doubt since the statement 1: says each of the old machines completed half the production in less than 4 hours , I took a case where the machines finish their job in a matter of minutes thus the total time for all three will be less than 60 minutes or 1 hr here and an extreme case as you did. Hence I concluded insufficient. Is this correct ?? I took a similar approach for statement 2.

Answer :E

Thanks

Yes, less than 4 hours could very well be a few seconds too. That is the extreme "minimum time" scenario. The approach is correct. _________________

The Stanford interview is an alumni-run interview. You give Stanford your current address and they reach out to alumni in your area to find one that can interview you...

Interested in applying for an MBA? In the fourth and final part of our live QA series with guest expert Chioma Isiadinso, co-founder of consultancy Expartus and former admissions...