Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A photographer will arrange 6 people of 6 different heights [#permalink]
30 Oct 2009, 06:26

1

This post received KUDOS

Expert's post

1

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

55% (medium)

Question Stats:

52% (02:23) correct
47% (01:30) wrong based on 118 sessions

A photographer will arrange 6 people of 6 different heights for photograph by placing them in two rows of three so that each person in the first row is standing in front of someone in the second row. The heights of the people within each row must increase from left to right, and each person in the second row must be taller than the person standing in front of him or her. How many such arrangements of the 6 people are possible?

Position of A and F has to be fix i.t. bottom line left for A and upper line right for F. Other position needs to be filled-in by B, C, D and E.

B can be on right or A or behind A. So 2 positions possible. C can be on right of B or behind him or A, that means 3 possible positions. D and E will have to fit into the positions accordingly without any option. Hence the ans should be 2 X 3 = 6.

Well, to start with I'll at least try to get the answer

Considering the arrangements: 4 5 6 1 2 3

2 4 6 1 3 5

2 5 6 1 3 4

3 4 6 1 2 5

3 5 6 1 2 4

Don't see other arrangements than 5. So would go with (A).

Position of 1 and 6 is fixed. Still don't see a formula for the rest, except manually finding the arrangement, which as you said takes more than 2 mins!

Well, to start with I'll at least try to get the answer

Considering the arrangements: 4 5 6 1 2 3

2 4 6 1 3 5

2 5 6 1 3 4

3 4 6 1 2 5

3 5 6 1 2 4

Don't see other arrangements than 5. So would go with (A).

Position of 1 and 6 is fixed. Still don't see a formula for the rest, except manually finding the arrangement, which as you said takes more than 2 mins!

u missed 436 125

_________________

Thanks, Sri ------------------------------- keep uppp...ing the tempo...

Press +1 Kudos, if you think my post gave u a tiny tip

Well, to start with I'll at least try to get the answer

Considering the arrangements: 4 5 6 1 2 3

2 4 6 1 3 5

2 5 6 1 3 4

3 4 6 1 2 5

3 5 6 1 2 4

Don't see other arrangements than 5. So would go with (A).

Position of 1 and 6 is fixed. Still don't see a formula for the rest, except manually finding the arrangement, which as you said takes more than 2 mins!

u missed 436 125

But 436 wouldn't be correct as from left to right it has to in increasing order and 4 is greater than 3. Unless I'm not getting it?

The key here is to spot that the tallest (6) and shortest (1) have fixed positions and then count the possible arrangements of others.
_________________

A photographer will arrange 6 people of 6 different heights for photograph by placing them in two rows of three so that each person in the first row is standing in front of someone in the second row. The heights of the people within each row must increase from left to right, and each person in the second row must be taller than the person standing in front of him or her. How many such arrangements of the 6 people are possible?

A. 5 B. 6 C. 9 D. 24 E. 36

is there any algebric methode? I did it by finding all different configuration

("B" stands for "back", "F" stands for "front", "L" stands for "left", etc.)

Let's also assign "names" to each of the six people - 1 is the shortest, 2 is the next shortest, ... and 6 is the tallest.

Notice first that the only place where 6 can stand is in the BR position. A person standing in any of the other positions has to be shorter than at least one other person, and 6 isn't shorter than anybody.

By similar reasoning, we can see that the only place where 1 can stand is in the FL position. A person standing in any of the other positions has to be taller than at least one other person, and 1 isn't taller than anybody.

So we know that any possible arrangement will be of this form:

BL BM 6 1 FM FR

All we need to do is count possible ways of putting 2, 3, 4, and 5 in positions BL, BM, FM, and FR. In order to count possibilities, let's focus on who goes into the BL position. 1 and 6 are already fixed in their own positions. There's no way 5 could be in the BL position, because there would be no way to assign someone to BM such that the heights in the back row increased consistently from left to right. So we know that the person in the BL position has to be either 2, 3, or 4. We investigate each possibility in turn:

If 2 goes in the BL position, there are just two possibilities:

2 4 6 1 3 5

and

2 5 6 1 3 4

If 3 goes in the BL position, there are also two possibilities:

3 4 6 1 2 5

and

3 5 6 1 2 4

If 4 goes in the BL position, there is just one possible arrangement:

4 5 6 1 2 3

Counting these possibilities, we see that there are only 5 possible arrangements.

After you realize that the tallest and shortest have fixed positions you can just count possible arrangements without any formula.

I immediately figured out that Position 1 and 6 were fixed, but then I ended up wasting my time trying to find a formula for the whole thing. After a while I stopped trying to find a formula and just counted the possible combinations and came up with 5.

Re: A photographer will arrange 6 people of 6 different heights [#permalink]
01 Jun 2014, 15:38

Is there any combinatorics approach on this photograph questions? I hope I don't get one of these in the real exam, or should we just rely on brute force and counting outcomes?

Cheers J

Kudos for new approach to this problem

gmatclubot

Re: A photographer will arrange 6 people of 6 different heights
[#permalink]
01 Jun 2014, 15:38