Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A pool which was 2/3 full to begin with, was filled at a [#permalink]

Show Tags

02 Jun 2012, 22:51

3

This post received KUDOS

8

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

15% (low)

Question Stats:

82% (02:32) correct
18% (02:23) wrong based on 360 sessions

HideShow timer Statistics

A pool which was 2/3 full to begin with, was filled at a constant rate for 5/3 hours until it was until it was 6/7 full. At this rate, how much time would it take to completely fill this pool if it was empty to begin with?

A. 8 hrs 45 mins. B. 9 hrs. C. 9 hrs 30 mins. D. 11 hrs 40 mins. E. 15 hrs 30 mins .

A pool which was 2/3 full to begin with, was filled at a constant rate for 5/3 hours until it was until it was 6/7 full. At this rate, how much time would it take to completely fill this pool if it was empty to begin with?

A. 8 hrs 45 mins. B. 9 hrs. C. 9 hrs 30 mins. D. 11 hrs 40 mins. E. 15 hrs 30 mins .

\(\frac{6}{7}-\frac{2}{3}=\frac{4}{21}\) of the pool wad filled in \(\frac{5}{3}\) hours.

So, to fill the pool completely at this rate it would take \(\frac{(\frac{5}{3})}{(\frac{4}{21})}=8\frac{3}{4}\) hours or 8 hours and 45 minutes.

Re: A pool which was 2/3 full to begin with, was filled at a [#permalink]

Show Tags

24 Jan 2014, 10:45

Bunuel wrote:

macjas wrote:

A pool which was 2/3 full to begin with, was filled at a constant rate for 5/3 hours until it was until it was 6/7 full. At this rate, how much time would it take to completely fill this pool if it was empty to begin with?

A. 8 hrs 45 mins. B. 9 hrs. C. 9 hrs 30 mins. D. 11 hrs 40 mins. E. 15 hrs 30 mins .

\(\frac{6}{7}-\frac{2}{3}=\frac{4}{21}\) of the pool wad filled in \(\frac{5}{3}\) hours.

So, to fill the pool completely at this rate it would take \(\frac{(\frac{5}{3})}{(\frac{4}{21})}=8\frac{3}{4}\) hours or 8 hours and 45 minutes.

Answer: A.

Bunuel, this problem is fairly simple but what has confused me a little bit was your approach. Are we always able to use Total Time \(\frac{5}{3}\) divided by Total Work \(\frac{4}{21}\) as a formula to give us the amount of Time it will take to complete the entire task? I thought that Total Time \(\frac{5}{3}\) divided by Total Work \(\frac{4}{21}\) gave us \(1/Rate\)

Thank you for all your great posts. They are helping me get my quant score up significantly. Work/Rate problems sometimes stump me for some reason.
_________________

"Never, Never, Never give in."

From 510 to 770: http://gmatclub.com/forum/510-to-770-49q-46v-7ir-what-worked-for-me-2-years-176580.html#p1394349

From 2 dings to multiple admits (use Paul Bodine): http://gmatclub.com/forum/best-admissions-consulting-companies-2015-season-190156.html#p1492255

Re: A pool which was 2/3 full to begin with, was filled at a [#permalink]

Show Tags

28 Jan 2014, 07:04

I have gone in a little traditional way...

As its about fraction I have taken 21 liter is capacity. Now as given Initially it was 21*2/3=14 L full Then it was filled @ constant rate till 6/7 means= 21*6/7=18 L It means @ 5/3 hr it was filled 18-14=4 ltr Now R*5/3=4 so R=12/5 So to find Time(hours) to completely fill @ constant rate we have 12/5*T=21(full capacity) T=8 hr 45 min(A)

Re: A pool which was 2/3 full to begin with, was filled at a [#permalink]

Show Tags

04 May 2014, 06:02

PeterHAllen wrote:

Bunuel wrote:

macjas wrote:

A pool which was 2/3 full to begin with, was filled at a constant rate for 5/3 hours until it was until it was 6/7 full. At this rate, how much time would it take to completely fill this pool if it was empty to begin with?

A. 8 hrs 45 mins. B. 9 hrs. C. 9 hrs 30 mins. D. 11 hrs 40 mins. E. 15 hrs 30 mins .

\(\frac{6}{7}-\frac{2}{3}=\frac{4}{21}\) of the pool wad filled in \(\frac{5}{3}\) hours.

So, to fill the pool completely at this rate it would take \(\frac{(\frac{5}{3})}{(\frac{4}{21})}=8\frac{3}{4}\) hours or 8 hours and 45 minutes.

Answer: A.

Bunuel, this problem is fairly simple but what has confused me a little bit was your approach.

I am a little confused too. Shouldn't it be Rate = Time x Work ?

A pool which was 2/3 full to begin with, was filled at a constant rate for 5/3 hours until it was until it was 6/7 full. At this rate, how much time would it take to completely fill this pool if it was empty to begin with?

A. 8 hrs 45 mins. B. 9 hrs. C. 9 hrs 30 mins. D. 11 hrs 40 mins. E. 15 hrs 30 mins.

\(\frac{6}{7}-\frac{2}{3}=\frac{4}{21}\) of the pool wad filled in \(\frac{5}{3}\) hours.

So, to fill the pool completely at this rate it would take \(\frac{(\frac{5}{3})}{(\frac{4}{21})}=8\frac{3}{4}\) hours or 8 hours and 45 minutes.

Answer: A.

Bunuel, this problem is fairly simple but what has confused me a little bit was your approach.

I am a little confused too. Shouldn't it be Rate = Time x Work ?

No, it's Time * Rate = Work.

We have that \(\frac{4}{21}\) of the pool (job done) was filled in \(\frac{5}{3}\) hours (time). How much time would it take to completely fill the pool?

\(\frac{5}{3}*Rate=\frac{4}{21}\) --> \(Rate=\frac{4}{21}*\frac{3}{5}=\frac{4}{35}\) --> time = reciprocal of rate = 35/4 hours.
_________________

Re: A pool which was 2/3 full to begin with, was filled at a [#permalink]

Show Tags

14 Feb 2015, 12:18

macjas wrote:

A pool which was 2/3 full to begin with, was filled at a constant rate for 5/3 hours until it was until it was 6/7 full. At this rate, how much time would it take to completely fill this pool if it was empty to begin with?

A. 8 hrs 45 mins. B. 9 hrs. C. 9 hrs 30 mins. D. 11 hrs 40 mins. E. 15 hrs 30 mins .

It 2/3 full

After 5/3 hour (T) it was at 6/7 . which means it took 5/3 hour to full = 6/7-2/3= 4/21

so rate= 4/21 x 3/5 = 4/35

Now work = 1 Rate = 4/35 so Time = 35/4 = 8 hour 45 minutes
_________________

Re: A pool which was 2/3 full to begin with, was filled at a [#permalink]

Show Tags

14 Jun 2016, 23:15

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Since my last post, I’ve got the interview decisions for the other two business schools I applied to: Denied by Wharton and Invited to Interview with Stanford. It all...

Marketing is one of those functions, that if done successfully, requires a little bit of everything. In other words, it is highly cross-functional and requires a lot of different...