Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A right triangle ABC has to be constructed in the xy-plane [#permalink]
22 May 2010, 14:05

4

This post received KUDOS

8

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

15% (low)

Question Stats:

81% (02:15) correct
19% (02:02) wrong based on 227 sessions

A right triangle ABC has to be constructed in the xy-plane so that the right angle is at A and AB is parallel to x axis. The coordinates of A, B and C are to satisfy the inequalities -3 ≤ x ≤ 5 and 2 ≤ y ≤11 and x and y are integers. The number of different triangles that can be constructed with these properties are?

A. 100 B. 6480 C. 2320 D. 1500 E. 9000

my analysis

A(x,y) - 9,10- 90 possible values B(x,y) - 8,10 =80 possible values C(X,Y) -9,9 =81 POBBILE VALUES

Re: 700 + question [#permalink]
22 May 2010, 20:54

shekar123 wrote:

Please help me with this question

A right triangle ABC has to be constructed in the xy-plane so that the right angle is at A and AB is parallel to x axis. The coordinates of A, B and C are to satisfy the inequalities -3 ≤ x ≤ 5 and 2 ≤ y ≤11 and x and y are integers. The number of different triangles that can be constructed with these properties are?

my analysis

A(x,y) - 9,10- 90 possible values B(x,y) - 8,10 =80 possible values C(X,Y) -9,9 =81 POBBILE VALUES

i DON'T KNOW HOW TO PROCEED LATER

You are going in the right direction. For A there are 90 possibilities. However, for B we are bound by A, so we have only 8 possibilities because B has to have the same x-coordinate as A. Similarly C has 9 possibilities. Total: 90*8*10= 7200 _________________

press kudos, if you like the explanation, appreciate the effort or encourage people to respond.

Re: 700 + question [#permalink]
23 May 2010, 04:48

1

This post received KUDOS

Friends, Please provide the OA. I am trying to provide my thinking below: For A, there are 90 possibilities on the plane. For each location of A, as the triangle has to have same properties, there are 8 possibilities on the x axis and 9 possibilities on y axis. So the answer is 90*8*9 = 6480 Please provide the OA.

Consider giving me KUDOS if you find my post useful.

Re: 700 + question [#permalink]
23 May 2010, 05:06

Expert's post

5

This post was BOOKMARKED

shekar123 wrote:

Please help me with this question

A right triangle ABC has to be constructed in the xy-plane so that the right angle is at A and AB is parallel to x axis. The coordinates of A, B and C are to satisfy the inequalities -3 ≤ x ≤ 5 and 2 ≤ y ≤11 and x and y are integers. The number of different triangles that can be constructed with these properties are?

my analysis

A(x,y) - 9,10- 90 possible values B(x,y) - 8,10 =80 possible values C(X,Y) -9,9 =81 POBBILE VALUES

i DON'T KNOW HOW TO PROCEED LATER

amitjash's solution is correct.

We have the rectangle with dimensions 9*10 (9 horizontal dots and 10 vertical). AB is parallel to x-axis and AC is parallel to y-axis.

Choose the (x,y) coordinates for vertex A: 9C1*10C1=90; Choose the x coordinate for vertex B (as y coordinate is fixed by A): 8C1, (9-1=8 as 1 horizontal dot is already occupied by A); Choose the y coordinate for vertex C (as x coordinate is fixed by A): 9C1, (10-1=9 as 1 vertical dot is already occupied by A).

geometry - triangle [#permalink]
21 Dec 2010, 08:10

A right triangle ABC has to be constructed in the xy-plane so that the right angle is at A and AB is parallel to x axis. The coordinates of A, B and C are to satisfy the inequalities -3 ≤ x ≤ 5 and 2 ≤ y ≤11 and x and y are integers. The number of different triangles that can be constructed with these properties are?

Re: A right triangle ABC has to be constructed in the xy-plane [#permalink]
11 Jan 2014, 03:43

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: A right triangle ABC has to be constructed in the xy-plane [#permalink]
30 Jul 2014, 05:55

[quote="shekar123"]A right triangle ABC has to be constructed in the xy-plane so that the right angle is at A and AB is parallel to x axis. The coordinates of A, B and C are to satisfy the inequalities -3 ≤ x ≤ 5 and 2 ≤ y ≤11 and x and y are integers. The number of different triangles that can be constructed with these properties are?

A. 100 B. 6480 C. 2320 D. 1500 E. 9000

Sol:

let's find point A first: X- axis_ point A :: point A can be any where between -3 and 5 on X- axis (total point = 5-(-3)+1 = 9)= 9c1 Y- axis_ point A :: for each x-coordinate the point A can take any value from 2 to 11 (11-2+1) in Y -coordinate= 10c1

A : 9c1*10c1

Lets Now find point B :

X- axis _ Point B:: from remaining X cordinates( A has already taken one), B can take any value so 8C1 Y - axis_point B :: No bother because it will be on same co-ordinate as A

B: 8C1

Now point C: X: It has to be alias with A so no bother Y: It can take any value from remaining 9 (one already taken by A) , 9C1

total: 9c1*10c1*8c1*9c1 = 6480 !!!!

gmatclubot

Re: A right triangle ABC has to be constructed in the xy-plane
[#permalink]
30 Jul 2014, 05:55