A special sequence of numbers is written as 2, 9, 28, 65, 12 : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 24 Jan 2017, 13:34

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

A special sequence of numbers is written as 2, 9, 28, 65, 12

Author Message
TAGS:

Hide Tags

Intern
Joined: 04 Mar 2012
Posts: 46
Followers: 0

Kudos [?]: 218 [0], given: 10

A special sequence of numbers is written as 2, 9, 28, 65, 12 [#permalink]

Show Tags

22 May 2012, 08:16
9
This post was
BOOKMARKED
00:00

Difficulty:

55% (hard)

Question Stats:

68% (03:41) correct 32% (01:53) wrong based on 124 sessions

HideShow timer Statistics

A special sequence of numbers is written as 2, 9, 28, 65, 126 …….Find the ratio of the 7th term to the 15th term.

A. 1/4
B. 1/2
C. 129/422
D. 43/422
E. 43/129

couldn't get the logic behind the terms in the sequence
[Reveal] Spoiler: OA
Current Student
Joined: 21 May 2012
Posts: 92
Location: United States (CA)
Followers: 4

Kudos [?]: 32 [3] , given: 0

Re: special sequence of numbers is written as 2, 9, 28, 65 [#permalink]

Show Tags

22 May 2012, 08:24
3
KUDOS
Sequence is

$$1^3+1...2^3+1...3^3+1.....7^3+1.....15^3+1$$

Ratio thus is

$$\frac{7^3+1}{15^3+1}$$

Not sure what the quick way to simplify this is...
Intern
Joined: 28 Feb 2012
Posts: 22
GMAT 1: 700 Q48 V39
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 11 [3] , given: 3

Re: A special sequence of numbers is written as 2, 9, 28, 65, 12 [#permalink]

Show Tags

24 May 2012, 09:17
3
KUDOS
gmihir wrote:
A special sequence of numbers is written as 2, 9, 28, 65, 126 …….Find the ratio of the 7th term to the 15th term.

A. 1/4
B. 1/2
C. 129/422
D. 43/422
E. 43/129

couldn't get the logic behind the terms in the sequence

The series as pointed out already is $$(1^3+1) , (2^3+1) , (3^3+1) , (4^3+1)..$$
So, ratio of the 7th term to the 15th term = $$7^3+1/15^3+1$$

Simplify it as $$(7+1)(7^2 - 7*1 + 1)/(15+1)(15^2 - 15*1 + 1)$$
because $$a^3 + b^3 = (a+b)(a^2-ab+b^2)$$

So, our ratio is $$8*43/16*211 = 43/422$$

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13547
Followers: 578

Kudos [?]: 163 [0], given: 0

Re: A special sequence of numbers is written as 2, 9, 28, 65, 12 [#permalink]

Show Tags

30 Dec 2013, 02:06
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Current Student
Joined: 06 Sep 2013
Posts: 2035
Concentration: Finance
GMAT 1: 770 Q0 V
Followers: 62

Kudos [?]: 594 [0], given: 355

Re: special sequence of numbers is written as 2, 9, 28, 65 [#permalink]

Show Tags

13 Jan 2014, 09:39
Cares wrote:
Sequence is

$$1^3+1...2^3+1...3^3+1.....7^3+1.....15^3+1$$

Ratio thus is

$$\frac{7^3+1}{15^3+1}$$

Not sure what the quick way to simplify this is...

Well I'll tel you what I did

You end up with 344/3375

I just used what I call 'Brute Force Heavy discount shorcut' and ended up with 3/33 = 1/11 approx

So among the answer choices the only one that made sence was D

Not sure if there is another approach that might be more elegant

Cheers!
J

PS. After reflecting on this...

Actually what one can do is the following:

Once you get to (7/15)^3 then this is approx 1/8

Only answer choice that even comes close to 1/8 is answer choice D

Hence D it is!
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13547
Followers: 578

Kudos [?]: 163 [0], given: 0

Re: A special sequence of numbers is written as 2, 9, 28, 65, 12 [#permalink]

Show Tags

09 Jun 2016, 11:22
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: A special sequence of numbers is written as 2, 9, 28, 65, 12   [#permalink] 09 Jun 2016, 11:22
Similar topics Replies Last post
Similar
Topics:
if a@b = a * b^(1/2) then 2@9 = ? 2 23 May 2016, 19:39
4 A sequence of numbers is defined by the formula an = 2^n 3 20 Jul 2014, 01:57
17 If the numbers 17/24, 1/2, 3/8, 3/4, and 9/16 were ordered 12 19 Jan 2014, 22:50
29 In a sequence of 12 numbers, each term, except for the first 17 03 Nov 2012, 18:36
Consider the sequence of numbers beginning 23, 27, 28, 32, 33... It 3 09 Feb 2011, 08:14
Display posts from previous: Sort by