Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
A sphere is inscribed in a cube with an edge of x centimeter [#permalink]
20 Jul 2013, 04:03
3
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
45% (medium)
Question Stats:
59% (01:40) correct
41% (00:59) wrong based on 187 sessions
A sphere is inscribed in a cube with an edge of x centimeters. In terms of x what is the shortest possible distance from one of the vertices of the cube to the surface of the sphere?
A. \(x(\sqrt{3}- 1)\) B. \(\frac{x}{2}\) C. \(x(\sqrt{2} - 1)\) D. \(\frac{x}{2}(\sqrt{3} - 1)\) E. \(\frac{x}{2}(\sqrt{2} - 1)\)
Re: A sphere is inscribed in a cube with an edge of x centimeter [#permalink]
12 Nov 2013, 23:44
7
This post received KUDOS
Expert's post
1
This post was BOOKMARKED
gmatzac wrote:
Why do we have to go along the diagonal of the cube?
I am getting E by going straight from the corner towards the sphere. The way I'm doing it would be the same if it were a circle/square rather than sphere/cube.
Why is this wrong? I can't figure it out
That's not correct. Draw a cube and see how you will inscribe a sphere in it. Note that the sphere will not touch any edges/corners of the cube. It will touch only the 6 faces of the cube at one point each. This point will lie in the center of the face of the cube. If you go the usual two dimensional way, you are assuming that the sphere is lying flat on the face of the cube which is not correct. The sphere only touches the face of the cube on one point i.e. the point where the diagonals of the square face intersect. Hence, actually the distance of this diagonal to the sphere will be half the length of the diagonal. On the other hand, the diagonal of the cube (from one vertex to the opposite vertex across the cube will go right through the center of the sphere. It will stick a little bit out on both sides close to the vertex but will predominantly lie within the sphere on its diameter. So we find the length of the cube diagonal, subtract the sphere diameter out of it and divide the rest of the diagonal by 2 to get length of each little piece.
Think of a globe and its inclined axis. Imagine making a cube around it such that the globe touches each face of the cube. The shortest distance between a vertex of the cube and the globe will be the part of the inclined axis sticking out of the globe touching a vertex of the cube. _________________
Re: A sphere is inscribed in a cube with an edge of x centimeter [#permalink]
20 Jul 2013, 05:18
3
This post received KUDOS
Expert's post
2
This post was BOOKMARKED
skamal7 wrote:
A sphere is inscribed in a cube with an edge of x centimeters. In terms of x what is the shortest possible distance from one of the vertices of the cube to the surface of the sphere?
A. \(x(\sqrt{3}- 1)\) B. \(\frac{x}{2}\) C. \(x(\sqrt{2} - 1)\) D. \(\frac{x}{2}(\sqrt{3} - 1)\) E. \(\frac{x}{2}(\sqrt{2} - 1)\)
M28-01
Say \(x=10\) centimeters.
Then, since a sphere is inscribed in cube then the edge of the cube equals to the diameter of a sphere --> \(Diameter=10\).
Next, diagonal of a cube equals to \(Diagonal=\sqrt{10^2+10^2+10^2}=10\sqrt{3}\).
Now half of Diagonal minus Diameter is gap between the vertex of a cube and the surface of the sphere --> \(gap=\frac{Diagonal -Diameter}{2}=\frac{10*\sqrt{3}-10}{2}=5(\sqrt{3}-1)\).
Since \(x=10\) then \(5(\sqrt{3}-1)=\frac{x}{2}(\sqrt{3} - 1)\).
Re: A sphere is inscribed in a cube with an edge of x centimeter [#permalink]
02 Nov 2015, 22:07
2
This post received KUDOS
Expert's post
VeritasPrepKarishma wrote:
gmatzac wrote:
Why do we have to go along the diagonal of the cube?
I am getting E by going straight from the corner towards the sphere. The way I'm doing it would be the same if it were a circle/square rather than sphere/cube.
Why is this wrong? I can't figure it out
That's not correct. Draw a cube and see how you will inscribe a sphere in it. Note that the sphere will not touch any edges/corners of the cube. It will touch only the 6 faces of the cube at one point each. This point will lie in the center of the face of the cube. If you go the usual two dimensional way, you are assuming that the sphere is lying flat on the face of the cube which is not correct. The sphere only touches the face of the cube on one point i.e. the point where the diagonals of the square face intersect. Hence, actually the distance of this diagonal to the sphere will be half the length of the diagonal. On the other hand, the diagonal of the cube (from one vertex to the opposite vertex across the cube will go right through the center of the sphere. It will stick a little bit out on both sides close to the vertex but will predominantly lie within the sphere on its diameter. So we find the length of the cube diagonal, subtract the sphere diameter out of it and divide the rest of the diagonal by 2 to get length of each little piece.
Think of a globe and its inclined axis. Imagine making a cube around it such that the globe touches each face of the cube. The shortest distance between a vertex of the cube and the globe will be the part of the inclined axis sticking out of the globe touching a vertex of the cube.
Responding to a pm:
Quote:
CAN YOU please explain why is the diagonal root-square 10^2*10^2*10^2 and not just 10^2*10^2 (applying P.theor.)?
Diagonal of a square will be \(\sqrt{(10^2 + 10^2)}\) (shown by 'd' in the diagram) Diagonal of a cube will be 3 dimensional (shown by 'D' in the figure - the green line). We will need to use pythagorean theorem again on it. It will be the hypotenuse when the legs are height of the cube (a) and the diagonal of the square face (d).
Re: A sphere is inscribed in a cube with an edge of x centimeter [#permalink]
31 Aug 2015, 08:07
1
This post received KUDOS
Expert's post
reto wrote:
Bunuel wrote:
Now half of Diagonal minus Diameter is gap between the vertex of a cube and the surface of the sphere
Does GMAC require this knowledge about spheres and these distances?
This question requires no particular knowledge about spheres. It needs you to just visualise - nothing wrong with that. It is certainly suitable for GMAT. You could get a volume of sphere kind of question too but you will be given the formula used to find the volume of sphere. For a regular 3-D figure such as a cylinder or prism (where Volume = Area of base * Height), you could be required to find the volume without the formula. _________________
Re: A sphere is inscribed in a cube with an edge of x centimeter [#permalink]
20 Jul 2013, 05:48
Wow awesome explanation !! +1 to you..By any chance are there any questions which are similar to this other apart from the link provided by you? _________________
"Giving kudos" is a decent way to say "Thanks" and motivate contributors. Please use them, it won't cost you anything
Re: A sphere is inscribed in a cube with an edge of x centimeter [#permalink]
12 Nov 2013, 13:36
Why do we have to go along the diagonal of the cube?
I am getting E by going straight from the corner towards the sphere. The way I'm doing it would be the same if it were a circle/square rather than sphere/cube.
Re: A sphere is inscribed in a cube with an edge of x centimeter [#permalink]
13 Nov 2013, 11:37
Wow! You made the visualization perfectly clear. I was thinking cylinder not sphere, however your explanation made the second half of solving the problem make the algebra come together easily.
Thanks so much for that reply, I really appreciate it.
Re: A sphere is inscribed in a cube with an edge of x centimeter [#permalink]
18 Feb 2015, 20:18
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
A sphere is inscribed in a cube with an edge of x centimeter [#permalink]
25 Feb 2015, 13:46
I did it using the relationship between the diagonal of the cube and the side of the cube.
So, if the side is x, the diagonal is xSQRT3.
So, to find the gap, we need to subtract the diameter of the circle from the diagonal of the square (which would leave us with the two small gaps between the circle and the square, across the diagonal of he square) and divide this by 2, to get only the length of one of the gaps.
So, the diagonal is xSQRT3 The diameter of the circle is x, as the side of the square ( this is obvious if you draw the diagonal in the middle of the square, where the circle is touching the sides of the square).
(xSQRT3 - x) / 2 = x/2 (SQRT3 - 1).
Sorry for the ugly formatting, but I couldn't do the square roots in preview...
Re: A sphere is inscribed in a cube with an edge of x centimeter [#permalink]
03 Nov 2015, 01:06
Expert's post
1
This post was BOOKMARKED
skamal7 wrote:
A sphere is inscribed in a cube with an edge of x centimeters. In terms of x what is the shortest possible distance from one of the vertices of the cube to the surface of the sphere?
A. \(x(\sqrt{3}- 1)\) B. \(\frac{x}{2}\) C. \(x(\sqrt{2} - 1)\) D. \(\frac{x}{2}(\sqrt{3} - 1)\) E. \(\frac{x}{2}(\sqrt{2} - 1)\)
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...