A square in the XY co-ordinate system has vertices as (1,1), : PS Archive
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 23 Jan 2017, 03:54

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

A square in the XY co-ordinate system has vertices as (1,1),

 post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
CEO
Joined: 15 Aug 2003
Posts: 3460
Followers: 67

Kudos [?]: 863 [0], given: 781

A square in the XY co-ordinate system has vertices as (1,1), [#permalink]

Show Tags

15 Sep 2003, 07:01
00:00

Difficulty:

(N/A)

Question Stats:

0% (00:00) correct 0% (00:00) wrong based on 0 sessions

HideShow timer Statistics

This topic is locked. If you want to discuss this question please re-post it in the respective forum.

A square in the XY co-ordinate system has vertices as (1,1), (1,-1), (-1,-1), (-1,1). If a is the x coordinate of any point and b the y-coordinate of any point in the XY coordinate system, find the probability that a point selected at random from the square region will satisfy x^2+ y^2<1?

I have my doubts about this one...but let me see if y'all can crack this one

Thanks
Praetorian
Intern
Joined: 28 Aug 2003
Posts: 36
Location: USA
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: PS : probability [#permalink]

Show Tags

15 Sep 2003, 07:22
praetorian123 wrote:
A square in the XY co-ordinate system has vertices as (1,1), (1,-1), (-1,-1), (-1,1). If a is the x coordinate of any point and b the y-coordinate of any point in the XY coordinate system, find the probability that a point selected at random from the square region will satisfy x^2+ y^2<1?

I have my doubts about this one...but let me see if y'all can crack this one

Thanks
Praetorian

Not sure if this is correct ..

x^2 + y^2 =1 is a circle around (0,0) with a radius of 1. And any point within that circle should have x^2 + y^2 < 1. So, probability of a point selected randomly that will satisfy x^2 + y^2 < 1 is:

Area of Circle/Area of Square = pi/4 = 3.14/4 = 0.785
CEO
Joined: 15 Aug 2003
Posts: 3460
Followers: 67

Kudos [?]: 863 [0], given: 781

Re: PS : probability [#permalink]

Show Tags

15 Sep 2003, 07:35
edealfan wrote:

Not sure if this is correct ..

x^2 + y^2 =1 is a circle around (0,0) with a radius of 1. And any point within that circle should have x^2 + y^2 < 1. So, probability of a point selected randomly that will satisfy x^2 + y^2 < 1 is:

Area of Circle/Area of Square = pi/4 = 3.14/4 = 0.785

See the attachment

Area of Square 1 / Area of Square 2 = [sqrt(2)]^2 /(2^2) = 2/4 =0.5

But here we assumed x^2 + y^2 =1

So any value lesser than 0.5 should be a candidate..

Final answer will depend on the answer choices

Intern
Joined: 11 Jul 2003
Posts: 28
Followers: 0

Kudos [?]: 0 [0], given: 0

Show Tags

16 Sep 2003, 11:11
where does the circle come into the picture ? There is no need to get into circles for a simple question like this.

The questions asks of 4 points of the square. Hence the P=0.
Manager
Joined: 26 Aug 2003
Posts: 233
Location: United States
Followers: 1

Kudos [?]: 13 [0], given: 0

Show Tags

16 Sep 2003, 12:09
I see the trick here...

You basically have to draw lines x = 1 - y, x = y - 1 and the same set for y in terms of x. Doing this will give you a square between the four lines. You have to recognize that in order for the original equation (x^2 + y^2 < 1) to be true, you have to consider the points inside the new square.

Now targeting the probability question, you can see that the area of the new square is half that of the original square. So of ALL the points in the bigger square, half has many will fall in the new square. This will give you probability of 1/2. Well, technically the probability is a little less than 1/2 but it's so close that we can just say 1/2.

Good question.
Intern
Joined: 28 Aug 2003
Posts: 36
Location: USA
Followers: 0

Kudos [?]: 0 [0], given: 0

Show Tags

16 Sep 2003, 13:08
wonder_gmat wrote:
I see the trick here...

You basically have to draw lines x = 1 - y, x = y - 1 and the same set for y in terms of x. Doing this will give you a square between the four lines. You have to recognize that in order for the original equation (x^2 + y^2 < 1) to be true, you have to consider the points inside the new square.

Now targeting the probability question, you can see that the area of the new square is half that of the original square. So of ALL the points in the bigger square, half has many will fall in the new square. This will give you probability of 1/2. Well, technically the probability is a little less than 1/2 but it's so close that we can just say 1/2.

Good question.

Correct me if I am wrong, but here is a problem with your solution.

With the new square you created within the given square, consider a point say (1/2, 1/2). It is on the line x = 1 - y or x + y = 1. Now, consider a point, (0.55, 0.55) which is a little above (1/2, 1/2).

Now, (0.55)^2 + (0.55)^2 = 0.605 (which is less than 1).

x^2 + y^2 = 1 is a circle and not a square. Hope this helps.
CEO
Joined: 15 Aug 2003
Posts: 3460
Followers: 67

Kudos [?]: 863 [0], given: 781

Show Tags

16 Sep 2003, 21:31
edealfan wrote:
Correct me if I am wrong, but here is a problem with your solution.

With the new square you created within the given square, consider a point say (1/2, 1/2). It is on the line x = 1 - y or x + y = 1. Now, consider a point, (0.55, 0.55) which is a little above (1/2, 1/2).

Now, (0.55)^2 + (0.55)^2 = 0.605 (which is less than 1).

x^2 + y^2 = 1 is a circle and not a square. Hope this helps.

Watchdog:
If you explain your solution, maybe we can tell you if you right.

Wonder :
I constructed the square using the pythagorous theorem for each set of points. for eg, for (1,1) ....1^2 + 1^2 = 2
So the Hypotenuse or the side of the square = Sqrt(2)

Edeal :
GMAT never tests on Circle formulas...so i was trying to see if anyone can do in a simpler way..
But i guess we can leave it at that...we have to rely on the answer choices for a definite answer.

Thanks
Praetorian
16 Sep 2003, 21:31
Display posts from previous: Sort by

A square in the XY co-ordinate system has vertices as (1,1),

 post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.