Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

A Town T has 20,000 residents, 60 percent of whom are female. What percent of the residents were born in Town T?

(1) The number of female residents who were born in Town T is twice the number of male residents who were not born in Town T. (2) The number of female residents who were not born in Town T is twice the number of female residents who were born in Town T.

Data Sufficiency Question: 63 Category:Arithmetic Percents Page: 157 Difficulty: 600

Each week we'll be posting several questions from The Official Guide For GMAT® Quantitative Review, 2ND Edition and then after couple of days we'll provide Official Answer (OA) to them along with a slution.

We'll be glad if you participate in development of this project: 1. Please provide your solutions to the questions; 2. Please vote for the best solutions by pressing Kudos button; 3. Please vote for the questions themselves by pressing Kudos button; 4. Please share your views on difficulty level of the questions, so that we have most precise evaluation.

Re: A Town T has 20,000 residents, 60 percent of whom are fem al [#permalink]
29 Jan 2014, 02:00

From ques stimulus:no. of females=60% of 20000=12,000 no. of males=8000 From S1:Let no. of females born in town be 2x Therefore no. of females not born=12000-2x And no. of males not born=x Also.no. of males born=8000-x But this doesn't give us value of x.Insufficient.

From S2:No. of females not born=2x Therefore,no. of females born=x And 2x+x=12000 x=4000 But we still don't know the no. of males born and not born in town.Insufficient.

Combining the two statments we can find the no. of residents born in town T. Ans.C

Re: A Town T has 20,000 residents, 60 percent of whom are fem al [#permalink]
29 Jan 2014, 02:27

Attachment:

untitled.PNG [ 11.92 KiB | Viewed 2199 times ]

We are given no. of Female is 60% of Total Population so 12000 and no. of Male =8000

No From St 1 we get Only No Information (Refer Table 1) From St 2, we can find no. of Female born and not born in the city so not enough cause we don't know about men.

Combined we No. of Male born in the city is half of female born in the city so a=x/2=2000 So Total Refer table 3, We can find the no. of people born in the city.

Ans C _________________

“If you can't fly then run, if you can't run then walk, if you can't walk then crawl, but whatever you do you have to keep moving forward.”

Re: A Town T has 20,000 residents, 60 percent of whom are fem al [#permalink]
29 Jan 2014, 23:29

The no. of residents in town T is 20,000. We, need to find the % of residents born in town T.

As 60% of them are female, the no. of female residents = 60% or (3/5) * 20,000 = 12,000; So, the no. of male residents = 20,000 - 12,000 = 8,000;

We can assign the no. of Male and Female born in town T as MB and FB respecitively. Similary, we can assign the no. of Male and Female not born in town T as MNB and FNB respectively.

Statement (1): FB = 2 * MNB; Insufficient as we do not know the ratio of Born and Not Born.

Statement (2): FNB = 2 * FB; Since, we know the total no. of female residents in town T as 12,000, they can be classified as either Born or Not Born in town T. Therefore, FB + FNB = 12,000; FB + 2FB = 12,000; 3FB = 12,000; FB = 4,000 and therefore FNB = 8,000; Since we do not know the male strength born in town T, this statement is Insufficient too.

Re: A Town T has 20,000 residents, 60 percent of whom are fem al [#permalink]
14 Dec 2014, 03:01

On this question, although the actual number of residents is provided, there is no need to use actual numbers to determine sufficiency.

If you glance at Statement 1 and 2, you can see that no absolute numbers are provided. So for simplicity, just use the number of residents as 100. The calculations are useful though, to understand the problem (this very well could be a problem solving question).

Re: A Town T has 20,000 residents, 60 percent of whom are fem al [#permalink]
11 May 2015, 22:56

Expert's post

For students who are curious about whether the Matrix/Table method is the only method to solve such questions, here's how you could also solve this question using the Venn Diagrams.

Here,

y: females born in T z: females not born in T x: non-females (that is, males) born in T w: males not born in T

As per given information:

x + y + z + w = 20,000 y + z = 60% of 20,000 = 12,000 . . . (1)

=> x + w = 20,000 - 12,000 = 8000 . . . (2)

Required to find:\(\frac{(x+y)}{20,000}*100\)

So, we need to know the value of x + y.

Statement 1: y = 2w . . . (3)

By substituting (3) in (2), we'll know the value of x + \(\frac{y}{2}\), not of x + y.

Therefore, Not Sufficient.

Statement 2: z = 2y . . . (4)

By substituting (4) in (1), we can get the value of y. But no idea about the value of x. So, Not Sufficient.

Statements 1 + 2:

We have 4 equations and 4 variables. So, sufficient to determine the unique values of x and y, and hence of x + y.

Most of the Matrix/Table questions can be solved using the Venn Diagrams and vice-versa.

Back to hometown after a short trip to New Delhi for my visa appointment. Whoever tells you that the toughest part gets over once you get an admit is...