Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Abel can complete a work in 10 days, Ben in 12 days and Carl [#permalink]
03 Nov 2009, 11:21

1

This post received KUDOS

2

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

85% (hard)

Question Stats:

52% (03:56) correct
48% (02:42) wrong based on 230 sessions

Abel can complete a work in 10 days, Ben in 12 days and Carla in 15 days. All of them began the work together, but Abel had to leave after 2 days and Ben 3 days before the completion of the work. How long did the work last?

Re: Word problem-work rate [#permalink]
03 Nov 2009, 11:27

3

This post received KUDOS

1

This post was BOOKMARKED

jade3 wrote:

Abel can complete a work in 10 days, Ben in 12 days and Carla in 15 days. All of them began the work together, but Abel had to leave after 2 days and Ben 3 days before the completion of the work. How long did the work last?

A. 6 B. 7 C. 8 D. 9 E. 10

B. 7

1/10 + 1/12 + 15 = 15/60 of the work done each day.

60 - 15/60-15/60 = 30/60 (abel then leaves)

Ben and carla working together finish 9/60 each day. Carla alone finished 4/60 each day so I figured the amount carla finishes alone will be a multiple of 4

30/60 - 9/60 = 21/60 (3 days total) 21/60-9/60 = 12/60 (4 days total; and coincidentally a multiple of 4) so assume carla works alone after this 12/60-4/60 = 8/60 (5 days) 8/60 - 4/60 = 4/60 (6 days) 4/60-4/60 = 0 (7 days)

Re: Word problem-work rate [#permalink]
17 Oct 2013, 22:21

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Re: Abel can complete a work in 10 days, Ben in 12 days and Carl [#permalink]
19 Oct 2013, 08:35

2

This post received KUDOS

Expert's post

asterixmatrix wrote:

Abel can complete a work in 10 days, Ben in 12 days and Carla in 15 days. All of them began the work together, but Abel had to leave after 2 days and Ben 3 days before the completion of the work. How long did the work last?

A. 6 B. 7 C. 8 D. 9 E. 10

Not to sound like a broken record from some of my earlier posts, but, worst case, you could always plug in answer choices for this problem.

Start with C and you get 2/10 of a job from Abel (which, notice, will always be the case), (8-3)/12 from Ben, and 8/15 from Carla.

LCM and add these up, and you get 12/60+25/60+32/60. Too much!

Do the same with B. Abel stays at 2/10, Ben is now 4/12, and Carla is 7/15. So, 12/60+20/60+28/60 = 60/60.

This approach could take longer in some circumstances, but it's always a default strategy where you have answer choices like these and no idea how to proceed. _________________

Re: Abel can complete a work in 10 days, Ben in 12 days and Carl [#permalink]
03 Nov 2013, 11:37

4

This post received KUDOS

Expert's post

2

This post was BOOKMARKED

asterixmatrix wrote:

Abel can complete a work in 10 days, Ben in 12 days and Carla in 15 days. All of them began the work together, but Abel had to leave after 2 days and Ben 3 days before the completion of the work. How long did the work last?

A. 6 B. 7 C. 8 D. 9 E. 10

Responding to a pm.

First 2 days all three of them worked together, thus they did 2*(1/10 + 1/12 + 1/15) = 1/2 of the work.

Last 3 days only Carla worked, thus she did 3/15 = 1/5 of the work.

1 - 1/2 - 1/5 = 3/10 of the work was done by Ben and Carla: (time)*(combined rate)=(job done) --> t*(1/12 + 1/15) = 3/10 --> t = 2 days. So, we have that Ben and Carla worked together for 2 days.

Re: Abel can complete a work in 10 days, Ben in 12 days and Carl [#permalink]
18 Mar 2014, 06:30

2

This post received KUDOS

Let the work be completed in 't'.

Then again "Rate * Time = Work"

Rate(A)) = 1/10 Rate(B)=1/12 Rate(C)=1/15

Since A worked for 2 Days Work done by A= 2/10 Since B worked for 3 Days before work was completed work done B= (t-3)/12 Since C worked for full number of days = t/15

Adding them gives total work which is 1 unit.

2/10 + (t-3)/12 + t/15 = 1

Hence t=7 _________________

Rgds, TGC! _____________________________________________________________________ I Assisted You => KUDOS Please _____________________________________________________________________________

Re: Abel can complete a work in 10 days, Ben in 12 days and Carl [#permalink]
08 May 2014, 13:49

asterixmatrix wrote:

Abel can complete a work in 10 days, Ben in 12 days and Carla in 15 days. All of them began the work together, but Abel had to leave after 2 days and Ben 3 days before the completion of the work. How long did the work last?

A. 6 B. 7 C. 8 D. 9 E. 10

Abel in the 2 days that he worked completed 1/5 of the job = 4/5 remains Then if Ben had to leave 3 days before the completion, this means that Carla had to work alone for these 3 days in which she completed 1/5 of the job.

Now together, Ben and Carla completed the job in (1/12 + 1/15)(t) = 3/5

3/20 (t) = 3/5 ---> t = 4

Therefore, these 4 days worked plus the 3 days that Carla had to work by herself add to 7 days

Answer: B

gmatclubot

Re: Abel can complete a work in 10 days, Ben in 12 days and Carl
[#permalink]
08 May 2014, 13:49

My three goals of business school: entrepreneurship, network, and professor mentor. I want to build something. I want to meet new people and create life-long friendships. I want to...

According to the initial plan, I was supposed to get into Stanford and any other school then choose Stanford. But that is not going to happen so here’s...

One thing I did not know when recruiting for the MBA summer internship was the following: just how important prior experience in the function that you're recruiting for...