Find all School-related info fast with the new School-Specific MBA Forum

It is currently 26 Dec 2014, 05:37

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Absolute value doubts

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Intern
Intern
avatar
Joined: 27 Aug 2013
Posts: 11
Followers: 0

Kudos [?]: 0 [0], given: 5

Absolute value doubts [#permalink] New post 26 Sep 2013, 03:32
If its given that a=|b|,
then can I square both sides and say a^2 = b^2 ?
In this case, if I take square root of the above equation, then it becomes |a| = |b| right?
Why is this different from the original equation?
2 KUDOS received
Manager
Manager
avatar
Joined: 10 Sep 2013
Posts: 80
Concentration: Sustainability, International Business
Followers: 0

Kudos [?]: 36 [2] , given: 2

Re: Absolute value doubts [#permalink] New post 26 Sep 2013, 04:06
2
This post received
KUDOS
resolehtmai1 wrote:
If its given that a=|b|,
then can I square both sides and say a^2 = b^2 ?
In this case, if I take square root of the above equation, then it becomes |a| = |b| right?
Why is this different from the original equation?


That is a very good question!
Lets go back to basics: You know:
|x|>=0
|x|=sqrt(x^2)
|-x|=x

But what do these mean? Lets take an example:
In the example you gave, if a = |b|
To answer your question: then can I square both sides and say a^2 = b^2 ?
Yes, but you must remember the condition that this is only possible under 2 conditions:
a = |b| = b .....when b>0
a = |b| =-b ....when b<0
In this case, if I take square root of the above equation,
Right, but again with the condition that,
sqrt(b^2) = b....when b>0 (Example: b =5, sqrt(25) = 5)
sqrt (b^2) = -b....when b<0 (Example: b =-5, sqrt(25) = 5)

[b]then it becomes |a| = |b| right?
[/b] Why is this different from the original equation?[
Umm.. here you are putting the +/- condition on a as well. That changes the original equation.

Hope this helps and its not tooo confusing!
_________________

Kudos if I helped :)

Intern
Intern
avatar
Joined: 27 Aug 2013
Posts: 11
Followers: 0

Kudos [?]: 0 [0], given: 5

Re: Absolute value doubts [#permalink] New post 27 Sep 2013, 00:15
thanx for the reply igotthis, but idintgetthis. :)
first of all:
igotthis wrote:
then it becomes |a| = |b| right?[/b] Why is this different from the original equation?[
Umm.. here you are putting the +/- condition on a as well. That changes the original equation.

ofcourse i applied +/- condition on a as well, coz according to your basics quote
igotthis wrote:
|x|=sqrt(x^2)

so a^2=b^2 becomes |a|=|b|.
but isn't something wrong with this? how can we derive |a|=|b| from just a=|b|?
Manager
Manager
avatar
Joined: 03 Jan 2013
Posts: 180
Location: United States
Concentration: Finance, Entrepreneurship
GMAT 1: 750 Q48 V46
GPA: 3.02
WE: Engineering (Other)
Followers: 1

Kudos [?]: 18 [0], given: 0

GMAT ToolKit User
Re: Absolute value doubts [#permalink] New post 27 Sep 2013, 09:20
Nevermind, totally misread OP
1 KUDOS received
Intern
Intern
avatar
Joined: 24 Sep 2013
Posts: 13
Followers: 0

Kudos [?]: 4 [1] , given: 27

Re: Absolute value doubts [#permalink] New post 27 Sep 2013, 14:26
1
This post received
KUDOS
Quote:
but isn't something wrong with this? how can we derive |a|=|b| from just a=|b|?


there is nothing wrong. we can derive |a| = |b| from a = |b| i.e.
a = |b| => |a| = |b| (but not the other way around).

you just need to consider the range of numbers that the first equation implies for 'a'. in the first equation (a = |b|) the right side ( |b| ) is 0 or greater than 0, therefore the left side (a) is also 0 or greater, so "a" can't be a negative number
(a >= 0).


let me explain in a different way:

1) original equation:
a = |b| implies that:
I. 'b' can be anything
II. a is 0 or greater than 0 i.e. 'a' cant be negative (a>=0).
for example:
b= -0.6 and a is 0.6
b = 0 and a is 0
b = 10 and a is 10

2) the new equation:
|a| = |b| says that absolute value of 'a' is equal to absolute value of 'b'.
why is this ok? because from the first equation we already know that 'a' is not negative, and since absolute value of non-negative numbers are the same as the number, the new equation true also.

remember always pay attention to range of values a variable can take. for example in X = 1/Y you should beware that y can never be 0.
Intern
Intern
avatar
Joined: 27 Aug 2013
Posts: 11
Followers: 0

Kudos [?]: 0 [0], given: 5

Re: Absolute value doubts [#permalink] New post 27 Sep 2013, 20:15
amostofi1999 wrote:
Quote:
but isn't something wrong with this? how can we derive |a|=|b| from just a=|b|?


there is nothing wrong. we can derive |a| = |b| from a = |b| i.e.
a = |b| => |a| = |b| (but not the other way around).

you just need to consider the range of numbers that the first equation implies for 'a'. in the first equation (a = |b|) the right side ( |b| ) is 0 or greater than 0, therefore the left side (a) is also 0 or greater, so "a" can't be a negative number
(a >= 0).


let me explain in a different way:

1) original equation:
a = |b| implies that:
I. 'b' can be anything
II. a is 0 or greater than 0 i.e. 'a' cant be negative (a>=0).
for example:
b= -0.6 and a is 0.6
b = 0 and a is 0
b = 10 and a is 10

2) the new equation:
|a| = |b| says that absolute value of 'a' is equal to absolute value of 'b'.
why is this ok? because from the first equation we already know that 'a' is not negative, and since absolute value of non-negative numbers are the same as the number, the new equation true also.

remember always pay attention to range of values a variable can take. for example in X = 1/Y you should beware that y can never be 0.


Thanks amostofi1999. i get it now. After reading your explanation, i also figured out why the other way round (that is a=|b| derived from |a|=|b|) is not correct.
Intern
Intern
avatar
Joined: 24 Sep 2013
Posts: 13
Followers: 0

Kudos [?]: 4 [0], given: 27

Re: Absolute value doubts [#permalink] New post 27 Sep 2013, 22:40
shraddhasahoo wrote:
Can anyone help me with fundamentals of absolute numbers??

if you have difficulty understanding, i have to recommendations for you regarding absolute value function. 1- try to really understand and learn the definitions deeply; dont just memorize a bunch of formulas 2- at first, learn the concept in your language. best source is probably official high school math or other books that are teaching the subject to first time learners.
Re: Absolute value doubts   [#permalink] 27 Sep 2013, 22:40
    Similar topics Author Replies Last post
Similar
Topics:
2 absolute value brokerbevo 5 24 May 2008, 15:06
Absolute values IrinaOK 2 03 Sep 2007, 00:40
absolute value faifai0714 4 11 Oct 2006, 22:10
Absolute Value? amansingla4 4 29 May 2006, 22:54
Absolut Valu Titleist 5 23 Oct 2005, 06:34
Display posts from previous: Sort by

Absolute value doubts

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.