Find all School-related info fast with the new School-Specific MBA Forum

It is currently 23 Sep 2014, 10:49

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Alicia lives in a town whose streets are on a grid system

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Senior Manager
Senior Manager
User avatar
Joined: 23 Mar 2011
Posts: 474
Location: India
GPA: 2.5
WE: Operations (Hospitality and Tourism)
Followers: 11

Kudos [?]: 107 [0], given: 59

GMAT Tests User
Alicia lives in a town whose streets are on a grid system [#permalink] New post 01 Feb 2012, 10:05
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

0% (00:00) correct 100% (01:17) wrong based on 4 sessions
Alicia lives in a town whose streets are on a grid system, with all streets running east-west or north-south without breaks. Her school, located on a corner, lies three blocks south and three blocks east of her home, also located on a corner. If Alicia s equally likely to choose any possible path from home to school, and if she only walks south or east, what is the probability she will walk south for the first two blocks?
_________________

"When the going gets tough, the tough gets going!"

Bring ON SOME KUDOS MATES+++



-----------------------------
Quant Notes consolidated: consolodited-quant-guides-of-forum-most-helpful-in-preps-151067.html#p1217652

My GMAT journey begins: my-gmat-journey-begins-122251.html

All about Richard Ivey: all-about-richard-ivey-148594.html#p1190518

Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22982
Followers: 3517

Kudos [?]: 26743 [2] , given: 2715

Re: Alicia lives in a town whose streets are on a grid system [#permalink] New post 01 Feb 2012, 10:27
2
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
sdas wrote:
Alicia lives in a town whose streets are on a grid system, with all streets running east-west or north-south without breaks. Her school, located on a corner, lies three blocks south and three blocks east of her home, also located on a corner. If Alicia s equally likely to choose any possible path from home to school, and if she only walks south or east, what is the probability she will walk south for the first two blocks?


To get to the school Alicia should walk 3 times south and 3 times east: SSSEEE. Total # of routs to the school is # of permutation of SSSEEE, which is 6!/(3!3!)=20 (# of permutations of 6 letters out of which 3 S's and 3 E's are identical);

Now, we wan to count all the routs which start with {SS}. So, {SS} is fixed and then there can be any combination of the rest 4 letters SEEE. So, all possible routs which start with {SS} equal to # of permutation of SEEE, which is 4!/3!=4 (# of permutations of 4 letters out of which 3 E's).

P=4/20=1/5.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Joined: 23 Mar 2011
Posts: 474
Location: India
GPA: 2.5
WE: Operations (Hospitality and Tourism)
Followers: 11

Kudos [?]: 107 [0], given: 59

GMAT Tests User
Re: Alicia lives in a town whose streets are on a grid system [#permalink] New post 01 Feb 2012, 10:46
Thanks Bunuel: the only part I was making mistake was (SS) to be considered 1 and then SEEE as 4. I was considering it as (SS) = 1 + SEEE (4) total 5. Thats why I was going wrong.
_________________

"When the going gets tough, the tough gets going!"

Bring ON SOME KUDOS MATES+++



-----------------------------
Quant Notes consolidated: consolodited-quant-guides-of-forum-most-helpful-in-preps-151067.html#p1217652

My GMAT journey begins: my-gmat-journey-begins-122251.html

All about Richard Ivey: all-about-richard-ivey-148594.html#p1190518

Intern
Intern
avatar
Joined: 02 Oct 2012
Posts: 5
WE: Other (Retail Banking)
Followers: 0

Kudos [?]: 1 [0], given: 132

Re: Alicia lives in a town whose streets are on a grid system [#permalink] New post 15 Jan 2013, 04:20
Hello,

I have a question to Bunuel. the formula you are using is Combination's formula as it is 6!/(6-3)!*3!, and since Alice has to choose 3 Ss and 3Es, where order does not matter, it has to be Combination. but you are saying that "Total # of routs to the school is # of permutation of SSSEEE, which is 6!/(3!3!)=20 (# of permutations of 6 letters out of which 3 S's and 3 E's are identical)"[u][/u]. can you please explain whether it should be a combination or permutation formula?

I am having hard time understanding this problem. Manhattan guide explains it with anagram grid, but I am not grasping that model. I tried to solve it using Slot Method, but could not do it. I can't really get it with combination/permutation formulas either. can you please explain it in an easier way with more details?
Intern
Intern
avatar
Joined: 10 Jun 2013
Posts: 4
Followers: 0

Kudos [?]: 3 [0], given: 0

Re: Alicia lives in a town whose streets are on a grid system [#permalink] New post 03 Jul 2013, 05:54
A slightly lengthier method would be:

Total number of ways to go home, considering that the order order matters =
Options: SSSEEE
Slots : ------
total permutations of 6 options in 6 slots: 6P6 = 6! = 6*5*4*3*2

Total ways to select "South" in the first 2 positions and anything else in the subsequent 4 positions =
Options: SS ????
Slots: -- ----

Permutations of 3 "S" in 2 slots AND Permutations of 4 Choices in 4 slots =
3P2 * 4P4 = 3! * 4! = 3*2*4*3*2

The probability is therefore:

3P2 * 4P4
--------------- =
6P6

3*2*4*3*2
-------------- = 1/5
6*5*4*3*2
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 22982
Followers: 3517

Kudos [?]: 26743 [0], given: 2715

Re: Alicia lives in a town whose streets are on a grid system [#permalink] New post 03 Jul 2013, 06:50
Expert's post
sdas wrote:
Alicia lives in a town whose streets are on a grid system, with all streets running east-west or north-south without breaks. Her school, located on a corner, lies three blocks south and three blocks east of her home, also located on a corner. If Alicia s equally likely to choose any possible path from home to school, and if she only walks south or east, what is the probability she will walk south for the first two blocks?


Similar questions to practice:
pat-will-walk-from-intersection-x-to-intersection-y-along-a-104817.html
how-many-ways-are-there-for-3-males-and-3-females-to-sit-106485.html
josh-has-to-run-an-electrical-wire-from-point-a-to-point-b-99962.html
every-morning-casey-walks-from-her-house-to-the-bus-stop-104236.html
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
User avatar
Joined: 17 Dec 2012
Posts: 395
Location: India
Followers: 13

Kudos [?]: 182 [0], given: 10

Re: Alicia lives in a town whose streets are on a grid system [#permalink] New post 03 Jul 2013, 10:23
1. Alicia can choose only the following as the first two in the path: S1 S2, E1 E2, S1 E1 and E1 S1
2. The total number of paths starting with each of the above are 4,4,6 and 6 respectively
3. Therefore the probability that Alicia chooses two south as the first two is 4/20=1/5.
_________________

Srinivasan Vaidyaraman
Sravna Test Prep
http://www.sravna.com/courses.php

Classroom Courses in Chennai
Online and Correspondence Courses

Intern
Intern
User avatar
Joined: 15 Aug 2011
Posts: 19
Location: United States
Concentration: Marketing, Technology
GPA: 3.6
WE: Project Management (Computer Software)
Followers: 0

Kudos [?]: 11 [0], given: 44

GMAT ToolKit User
Re: Alicia lives in a town whose streets are on a grid system [#permalink] New post 03 Jul 2013, 13:38
nintso wrote:
Hello,

I have a question to Bunuel. the formula you are using is Combination's formula as it is 6!/(6-3)!*3!, and since Alice has to choose 3 Ss and 3Es, where order does not matter, it has to be Combination. but you are saying that "Total # of routs to the school is # of permutation of SSSEEE, which is 6!/(3!3!)=20 (# of permutations of 6 letters out of which 3 S's and 3 E's are identical)"[u][/u]. can you please explain whether it should be a combination or permutation formula?

I am having hard time understanding this problem. Manhattan guide explains it with anagram grid, but I am not grasping that model. I tried to solve it using Slot Method, but could not do it. I can't really get it with combination/permutation formulas either. can you please explain it in an easier way with more details?


I have two keywords for Permutations and combinations - Arrangement and Selection.


SELECTION means - CHOOSING 1, more or nothing. (Combinations)

ARRANGEMENT means - RE-ORGANIZING or ORDER(Permutations)

In this given problem, Alice should definitely take 3 souths and 3 Easts to reach her school. But in any 'ORDER' of her choice....
==> I need to use Permutations and not combinations formula as I hear the word 'ORDER'

so calculating the total number of permutations = 6!/3!3!= 20

If Alice needs to take 2 Souths first, then the remaining 4 steps - 1 South and 3 Easts can be re-arranged (user Permutations) in = 4!/3!= 4

Probability = 4/20 = 1/5
_________________

"Hit KUDOS if you like my explanation"

Intern
Intern
avatar
Joined: 30 Nov 2013
Posts: 6
Location: Netherlands
GPA: 3.4
WE: Marketing (Consumer Products)
Followers: 0

Kudos [?]: 6 [0], given: 0

Re: Alicia lives in a town whose streets are on a grid system [#permalink] New post 02 Dec 2013, 11:16
if the order does not matter, the solution with combinatorics is correct. however, the question itself is open to argument. route has a totally different meaning - it is more identical to a decision tree rather than a problem where the 3 Ss and 3 Es are identical SSSEEE-. Therefore, Manhattan GMAT should reconsider this question before using it as an example.


nintso wrote:
Hello,

I have a question to Bunuel. the formula you are using is Combination's formula as it is 6!/(6-3)!*3!, and since Alice has to choose 3 Ss and 3Es, where order does not matter, it has to be Combination. but you are saying that "Total # of routs to the school is # of permutation of SSSEEE, which is 6!/(3!3!)=20 (# of permutations of 6 letters out of which 3 S's and 3 E's are identical)"[u][/u]. can you please explain whether it should be a combination or permutation formula?

I am having hard time understanding this problem. Manhattan guide explains it with anagram grid, but I am not grasping that model. I tried to solve it using Slot Method, but could not do it. I can't really get it with combination/permutation formulas either. can you please explain it in an easier way with more details?
Re: Alicia lives in a town whose streets are on a grid system   [#permalink] 02 Dec 2013, 11:16
    Similar topics Author Replies Last post
Similar
Topics:
13 Experts publish their posts in the topic In city A, the streets are aligned in a grid, where the east SOURH7WK 9 07 Aug 2012, 08:20
1 In city A, the streets are aligned in a grid, where the east guygmat 1 19 Jun 2011, 06:56
2 Experts publish their posts in the topic In city A, the streets are aligned in a grid (see attachment bhandariavi 5 21 Mar 2011, 19:13
Freedmans survey showed that people living in small towns Antmavel 4 29 Sep 2005, 01:19
Freedmans survey showed that people living in small towns rahulraao 3 12 Sep 2005, 03:22
Display posts from previous: Sort by

Alicia lives in a town whose streets are on a grid system

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.