Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 350,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: An operation @ is defined by the equation a@b = (a - b) / (a [#permalink]
24 Nov 2013, 11:04

Bunuel wrote:

Walkabout wrote:

An operation @ is defined by the equation a@b = (a - b) / (a + b), for all numbers a and b such that a ≠ -b. If a ≠ -c and a@c = 0, then c =

(A) -a (B) -1/a (C) 0 (D) 1/a (E) a

Given that \(a@b = \frac{a - b}{a + b}\), thus \(a@c = \frac{a - c}{a + c}\).

Also given that \(a@c = \frac{a - c}{a + c}=0\) --> \(a-c=0\) --> \(a=c\).

Answer: E.

Hi Bunnuel,

I've never senn such a task before in my life. Could you please explain what the @ means or what the whole expression "operation @" means? or do you recommend any books/links for this ? (I already worked through MGMAT Foundations of Math but really NEVER seen this before)

Re: An operation @ is defined by the equation a@b = (a - b) / (a [#permalink]
24 Nov 2013, 12:47

Expert's post

unceldolan wrote:

Bunuel wrote:

Walkabout wrote:

An operation @ is defined by the equation a@b = (a - b) / (a + b), for all numbers a and b such that a ≠ -b. If a ≠ -c and a@c = 0, then c =

(A) -a (B) -1/a (C) 0 (D) 1/a (E) a

Given that \(a@b = \frac{a - b}{a + b}\), thus \(a@c = \frac{a - c}{a + c}\).

Also given that \(a@c = \frac{a - c}{a + c}=0\) --> \(a-c=0\) --> \(a=c\).

Answer: E.

Hi Bunnuel,

I've never senn such a task before in my life. Could you please explain what the @ means or what the whole expression "operation @" means? or do you recommend any books/links for this ? (I already worked through MGMAT Foundations of Math but really NEVER seen this before)

@ is a made up operation (function), defined by the equation a@b = (a - b)/(a + b). For example 2@3=(2-3)/(2+3)=-1/5.

An operation θ is defined by the equation... [#permalink]
08 Apr 2014, 19:35

Hello and thank you for your help! I don't understand the answer provided by my book.

Question: An operation θ is defined by the equation a θ b = a-b/a+b, for all numbers a and b such that a does not equal -b. If a does not equal -c and a θ c = 0, then c = ?

Re: An operation θ is defined by the equation... [#permalink]
08 Apr 2014, 22:11

Expert's post

raharu wrote:

Hello and thank you for your help! I don't understand the answer provided by my book.

Question: An operation θ is defined by the equation a θ b = a-b/a+b, for all numbers a and b such that a does not equal -b. If a does not equal -c and a θ c = 0, then c = ?

Answer: Substitute c for b and 0 for a θ c in the given equation and solve for c.

So 0 = a - c / a + c

Multiply each side by a + c

So 0 = a - c So c = a

My question is: why can they substitute c for b?

Source: 12th edition Gmat Review

θ has been defined as an operator which takes input values of two variables and gives the answer by calculating (First variable - Second variable)/(First variable + Second variable). Here a and b are just taken as an example.

a θ b = (a - b)/(a + b) x θ y = (x - y)/(x + y) a θ c = (a - c)/(a + c) It doesn't what the two variables are.

Given a θ c = 0 = (a - c)/(a + c) Then a - c = 0 a = c _________________

Re: An operation θ is defined by the equation... [#permalink]
09 Apr 2014, 01:11

Expert's post

raharu wrote:

Hello and thank you for your help! I don't understand the answer provided by my book.

Question: An operation θ is defined by the equation a θ b = a-b/a+b, for all numbers a and b such that a does not equal -b. If a does not equal -c and a θ c = 0, then c = ?

Re: An operation @ is defined by the equation a@b = (a - b) / (a [#permalink]
11 May 2015, 03:07

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________

Hello everyone! Researching, networking, and understanding the “feel” for a school are all part of the essential journey to a top MBA. Wouldn’t it be great... ...

As part of our focus on MBA applications next week, which includes a live QA for readers on Thursday with admissions expert Chioma Isiadinso, we asked our bloggers to...

Booth allows you flexibility to communicate in whatever way you see fit. That means you can write yet another boring admissions essay or get creative and submit a poem...