Any decimal that has only a finite number of nonzero digits : GMAT Data Sufficiency (DS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 23 Jan 2017, 17:13

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Any decimal that has only a finite number of nonzero digits

Author Message
TAGS:

### Hide Tags

Manager
Joined: 12 Apr 2006
Posts: 218
Location: India
Followers: 1

Kudos [?]: 28 [0], given: 17

Any decimal that has only a finite number of nonzero digits [#permalink]

### Show Tags

24 May 2009, 04:40
1
This post was
BOOKMARKED
00:00

Difficulty:

35% (medium)

Question Stats:

62% (01:44) correct 38% (01:01) wrong based on 96 sessions

### HideShow timer Statistics

Any decimal that has only a finite number of nonzero digits is a terminating decimal. For example, 36, 0.72, and 3.005 are terminating decimals.

If a, b, c, d and e are integers and p = 2^a*3^b and q = 2^c*3^d*5^e, is p/q a terminating decimal?

(1) a > c
(2) b > d

OPEN DISCUSSION OF THIS QUESTION IS HERE: if-a-b-c-d-and-e-are-integers-and-p-2-a3-b-and-q-2-c3-d5-e-is-p-q-a-terminating-decimal-125789.html
[Reveal] Spoiler: OA

Last edited by Bunuel on 06 Dec 2013, 02:11, edited 1 time in total.
Edited the question and added the OA.
SVP
Joined: 29 Aug 2007
Posts: 2492
Followers: 68

Kudos [?]: 736 [0], given: 19

Re: DS - Number System [#permalink]

### Show Tags

24 May 2009, 12:40
humans wrote:
Any decimal that has only a finite number of nonzero digits is a terminating decimal. For example, 36, 0.72, and 3.005 are terminating decimals. If a, b, c, d and e are integers and p = 2^a*3^b and q = 2^c*3^d*5^e, is p/q a terminating decimal?

(1) a > c
(2) b > d

Got confused on this one.

p/q = (2^a*3^b) / (2^c*3^d*5^e)
p/q = 2^(a-c) 3^(b-d) (1 / 5^e)

Its B.
(1) a > c is not suff because b and d are unknown. NSF
(2) b > d is suff because 2^(a-c) and 5^e is always terminating decimal isrrespective of the values of a, c and e. Suff.
_________________

Gmat: http://gmatclub.com/forum/everything-you-need-to-prepare-for-the-gmat-revised-77983.html

GT

Manager
Joined: 13 May 2009
Posts: 195
Followers: 5

Kudos [?]: 37 [0], given: 1

Re: DS - Number System [#permalink]

### Show Tags

25 May 2009, 22:59
Tricky question.

$$p/q = ((2^a)*(3^b))/((2^c)*(2^d)*(5^e)) = ((2^(a-c))*(3^(b-d)))/(5^e)$$
If $$e>0$$, then we have some multiple of 5 in the denominator, and that's ok, it will terminate. Likewise if $$e<=0$$ then we have a bunch of 5's up top. If we have a bunch of 2's in the denominator, then it's irrelevant too. The only problem is if we have 3's in the denominator, if we do, it's repeating, if not, it's not repeating. How do we ensure there are no 3's down below? Make sure the exponent on the 3 is positive, or $$b-d>0$$ or $$b>d$$.

Looking at the answer choices, the answer is clearly $$B$$.
_________________

Senior Manager
Joined: 08 Jan 2009
Posts: 329
Followers: 2

Kudos [?]: 149 [0], given: 5

Re: DS - Number System [#permalink]

### Show Tags

26 May 2009, 22:10
Nice question. Will add it to my list. Great explainations.
Manager
Joined: 10 Aug 2008
Posts: 76
Followers: 1

Kudos [?]: 13 [0], given: 0

Re: DS - Number System [#permalink]

### Show Tags

27 May 2009, 07:01
Good Question !

Only 2 equation satisfy the Condition.
Hence Satetment 2 is suff But statemnet 1 is not suff

B
Intern
Joined: 29 Jan 2011
Posts: 7
Followers: 0

Kudos [?]: 0 [0], given: 3

Re: DS - Number System [#permalink]

### Show Tags

23 Apr 2011, 22:16
I understand the explanations above. However, I'm also interested in other scenarios. For example, let's say you break a fraction's numerator and denominator down to their prime factorizations and then reduce the original fraction to yield the reduced fraction. Will the presence of any prime numbers, other than 2 and 5, in the denominator of the reduced fraction yield a repeating (i.e. non-terminating) decimal?
GMAT Tutor
Joined: 24 Jun 2008
Posts: 1183
Followers: 422

Kudos [?]: 1510 [1] , given: 4

Re: DS - Number System [#permalink]

### Show Tags

24 Apr 2011, 00:05
1
KUDOS
Expert's post
TheRake wrote:
I understand the explanations above. However, I'm also interested in other scenarios. For example, let's say you break a fraction's numerator and denominator down to their prime factorizations and then reduce the original fraction to yield the reduced fraction. Will the presence of any prime numbers, other than 2 and 5, in the denominator of the reduced fraction yield a repeating (i.e. non-terminating) decimal?

Yes, that's precisely the rule: if you have reduced your fraction (that step is crucially important), and there's a prime factor of the denominator different from 2 or 5, you'll get a repeating decimal. If 2 and/or 5 are the only prime factors of your denominator, the decimal terminates.

It's easier to see why this should be true by thinking of the opposite problem: how you would write a terminating decimal as a fraction. It has to be possible to write any terminating decimal as a fraction with some power of 10 in the denominator - that is, with no primes besides 2 or 5 in the denominator. For example, if you start with 0.056, you can write that as the fraction 56/1000. Now sometimes when you reduce your fraction, some or all of the 2s or 5s might cancel (as they do here: 56/1000 = 7/125 = 7/(5^3) ), but no new prime besides 2 or 5 could ever show up. Conversely, if you start with a reduced fraction and there's some prime besides 2 or 5 in the denominator, there's not going to be any way to rewrite that fraction (by multiplying the top and bottom by the same number) to ever get a power of 10 in the denominator, because that other prime will always be there.
_________________

GMAT Tutor in Toronto

If you are looking for online GMAT math tutoring, or if you are interested in buying my advanced Quant books and problem sets, please contact me at ianstewartgmat at gmail.com

SVP
Joined: 16 Nov 2010
Posts: 1672
Location: United States (IN)
Concentration: Strategy, Technology
Followers: 33

Kudos [?]: 514 [0], given: 36

Re: DS - Number System [#permalink]

### Show Tags

24 Apr 2011, 07:04
The answer is B, because then 3 is always in the numerator, and 2 or 5 can divide this number in a finite manner.
_________________

Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

GMAT Club Premium Membership - big benefits and savings

Manager
Joined: 29 Mar 2010
Posts: 141
Location: United States
GMAT 1: 590 Q28 V38
GPA: 2.54
WE: Accounting (Hospitality and Tourism)
Followers: 1

Kudos [?]: 114 [0], given: 16

Re: Any decimal that has only a finite number of nonzero digits [#permalink]

### Show Tags

06 Dec 2013, 00:47
Is another reason A is wrong because 2^c could be 0?
_________________

4/28 GMATPrep 42Q 36V 640

Math Expert
Joined: 02 Sep 2009
Posts: 36618
Followers: 7100

Kudos [?]: 93577 [1] , given: 10578

Re: Any decimal that has only a finite number of nonzero digits [#permalink]

### Show Tags

06 Dec 2013, 02:16
1
KUDOS
Expert's post
hfbamafan wrote:
Is another reason A is wrong because 2^c could be 0?

2^c cannot be zero for any value of c.

Theory:
Reduced fraction $$\frac{a}{b}$$ (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and only $$b$$ (denominator) is of the form $$2^n5^m$$, where $$m$$ and $$n$$ are non-negative integers. For example: $$\frac{7}{250}$$ is a terminating decimal $$0.028$$, as $$250$$ (denominator) equals to $$2*5^3$$. Fraction $$\frac{3}{30}$$ is also a terminating decimal, as $$\frac{3}{30}=\frac{1}{10}$$ and denominator $$10=2*5$$.

Note that if denominator already has only 2-s and/or 5-s then it doesn't matter whether the fraction is reduced or not.

For example $$\frac{x}{2^n5^m}$$, (where x, n and m are integers) will always be the terminating decimal.

We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction $$\frac{6}{15}$$ has 3 as prime in denominator and we need to know if it can be reduced.

BACK TO THE ORIGINAL QUESTION:
If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?

Question: is $$\frac{2^a*3^b}{2^c*3^d*5^e}$$ a terminating decimal? The question basically asks whether we cans reduce 3^d in the denominator so to have only powers of 2 and 5 left, which can be rephrased is b (the power of 3 in the nominator) greater than or equal to d (the power of 3 in the denominator): is b>=d?

(1) a > c. Not sufficient.
(2) b > d. Sufficient.

OPEN DISCUSSION OF THIS QUESTION IS HERE: if-a-b-c-d-and-e-are-integers-and-p-2-a3-b-and-q-2-c3-d5-e-is-p-q-a-terminating-decimal-125789.html
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 36618
Followers: 7100

Kudos [?]: 93577 [1] , given: 10578

Re: Any decimal that has only a finite number of nonzero digits [#permalink]

### Show Tags

06 Dec 2013, 02:16
1
KUDOS
Expert's post
Re: Any decimal that has only a finite number of nonzero digits   [#permalink] 06 Dec 2013, 02:16
Similar topics Replies Last post
Similar
Topics:
2 Any decimal that has a finite number of nonzero digits is a terminatin 6 31 Aug 2016, 04:43
40 Any decimal that has only a finite number of nonzero digits 9 18 Dec 2012, 04:27
34 Any decimal that has only a finite number of nonzero digits 9 30 Sep 2010, 03:28
10 Any decimal that has only a finite number of nonzero digits 13 20 Aug 2010, 12:18
32 Any decimal that has only a finite number of nonzero digits 22 17 Feb 2010, 15:58
Display posts from previous: Sort by