Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Given: \(p=integer>0\) and \(q=integer>0\). Question: is \(p>n\) and \(q>n\)?

(1) \(p-q>n\). Clearly insufficient.

(2) \(q>p\), no info about \(n\). Not sufficient.

(1)+(2) Sum (1) and (2) (we can safely do this as their signs are in the same direction): \(p-q+q>n+p\) --> \(n<0\). As given that both \(p\) and \(q\) are positive then they are greater than negative \(n\). Sufficient.

Given: \(p=integer>0\) and \(q=integer>0\). Question: is \(p>n\) and \(q>n\)?

(1) \(p-q>n\). Clearly insufficient.

(2) \(q>p\), no info about \(n\). Not sufficient.

(1)+(2) Sum (1) and (2) (we can safely do this as their signs are in the same direction): \(p-q+q>n+p\) --> \(n<0\). As given that both \(p\) and \(q\) are positive then they are greater than negative \(n\). Sufficient.

Given: \(p=integer>0\) and \(q=integer>0\). Question: is \(p>n\) and \(q>n\)?

(1) \(p-q>n\). Clearly insufficient.

(2) \(q>p\), no info about \(n\). Not sufficient.

(1)+(2) Sum (1) and (2) (we can safely do this as their signs are in the same direction): \(p-q+q>n+p\) --> \(n<0\). As given that both \(p\) and \(q\) are positive then they are greater than negative \(n\). Sufficient.

Answer: C.

Your approach is too good

I second that! In my attempt to solve it i did a whole bunch of things but this was the easiest!

1. A is insufficient because we know p-q>n. This means p>n but q need not be greater than n. We have no further information on q. e.g. 5-2 > 2 but here q = n. So, rule out A.

2. B is insufficient as no information is given on n. So, we can't compare n to p and q.

Together C: we know that q-p MUST be negative and that makes n negative. Since p and q are positive integers its sufficient to answer the question that BOTH p and Q are greater than n.

I suppose the mistake you made is that you didn't read the key word POSITIVE INTEGERS.

Re: Are positive integers p and q both greater than n ? [#permalink]

Show Tags

04 Nov 2013, 04:50

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Are positive integers p and q both greater than n ? [#permalink]

Show Tags

07 Jan 2015, 04:15

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Happy New Year everyone! Before I get started on this post, and well, restarted on this blog in general, I wanted to mention something. For the past several months...

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Happy 2017! Here is another update, 7 months later. With this pace I might add only one more post before the end of the GSB! However, I promised that...

The words of John O’Donohue ring in my head every time I reflect on the transformative, euphoric, life-changing, demanding, emotional, and great year that 2016 was! The fourth to...