Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1 [#permalink]
11 May 2010, 03:59
8
This post received KUDOS
Expert's post
6
This post was BOOKMARKED
harikattamudi wrote:
I'm still not clear why X and Y has to be positive when X/Y > 1. Can you please explain the way you combined taking both X and Y to be positive and also X and Y as negative. Since in either case X/Y will be > 1.
Thanks -H
From (2) \(\frac{x}{y}>1\), we can only deduce that x and y have the same sigh (either both positive or both negative).
When we consider two statement together:
From (1): \(2x-2y=1\) --> \(x=y+\frac{1}{2}\)
From (2): \(\frac{x}{y}>1\) --> \(\frac{x}{y}-1>0\) --> \(\frac{x-y}{y}>0\) --> substitute \(x\) from (1) --> \(\frac{y+\frac{1}{2}-y}{y}>0\)--> \(\frac{1}{2y}>0\) (we can drop 2 as it won't affect anything here and write as I wrote \(\frac{1}{y}>0\), but basically it's the same) --> \(\frac{1}{2y}>0\) means \(y\) is positive, and from (2) we know that if y is positive x must also be positive.
OR: as \(y\) is positive and as from (1) \(x=y+\frac{1}{2}\), \(x=positive+\frac{1}{2}=positive\), hence \(x\) is positive too.
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1 [#permalink]
10 May 2010, 13:07
7
This post received KUDOS
Expert's post
4
This post was BOOKMARKED
Are x and y both positive? (1) 2x-2y=1 (2) x/y>1
(1) 2x-2y=1. Well this one is clearly insufficient. You can do it with number plugging OR consider the following: x and y both positive means that point (x,y) is in the I quadrant. 2x-2y=1 --> y=x-1/2, we know it's an equation of a line and basically question asks whether this line (all (x,y) points of this line) is only in I quadrant. It's just not possible. Not sufficient.
(2) x/y>1 --> x and y have the same sign. But we don't know whether they are both positive or both negative. Not sufficient.
(1)+(2) Again it can be done with different approaches. You should just find the one which is the less time-consuming and comfortable for you personally.
One of the approaches: \(2x-2y=1\) --> \(x=y+\frac{1}{2}\) \(\frac{x}{y}>1\) --> \(\frac{x-y}{y}>0\) --> substitute x --> \(\frac{1}{y}>0\) --> \(y\) is positive, and as \(x=y+\frac{1}{2}\), \(x\) is positive too. Sufficient.
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1 [#permalink]
12 Jun 2010, 09:15
2
This post received KUDOS
Expert's post
1
This post was BOOKMARKED
gsaxena26 wrote:
I am still struggling to understand how come both together are sufficient? What is common in both the answer choices that makes c a correct choice?
Here is the logic for C:
When we consider two statement together:
From (1): \(2x-2y=1\) --> \(x=y+\frac{1}{2}\)
From (2): \(\frac{x}{y}>1\) --> \(\frac{x}{y}-1>0\) --> \(\frac{x-y}{y}>0\) --> substitute \(x\) from (1) --> \(\frac{y+\frac{1}{2}-y}{y}>0\)--> \(\frac{1}{2y}>0\) (we can drop 2 as it won't affect anything here and write as I wrote \(\frac{1}{y}>0\), but basically it's the same) --> \(\frac{1}{2y}>0\) means \(y\) is positive, and from (2) we know that if y is positive x must also be positive.
OR: as \(y\) is positive and as from (1) \(x=y+\frac{1}{2}\), \(x=positive+\frac{1}{2}=positive\), hence \(x\) is positive too.
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1 [#permalink]
13 Jun 2010, 10:41
1
This post received KUDOS
gsaxena26 wrote:
x/y>1
But x can be both +ve and negative. But if x>y then answer choice will be true as it can only be positive when x >y. Is my understanding correct?
Your reasoning is almost correct. Statement II doesn't say x>y, it only says x/y>1... Be careful there is a difference, this is the mistake you made initially
Taking this statement alone, it means x and y are both same sign (either both + or both -) and |x|>|y|. Thus, it is insufficient and you need to combine it with Statement I.
From statement I, you know x=y+1/2, hence x>y. If you know x>y and also |x|>|y| this means both are positive.
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1 [#permalink]
26 Mar 2013, 12:56
1
This post received KUDOS
Here is what I did, and maybe it will help out those not using (or struggling with) the algebra method mentioned earlier in Bunuel's post. It looks long, but I tried to be complete with the thought and reasoning process
1) \(2x-2y = 1\)
First, test numbers: If \(x\) is a positive number, then \(y\) must be a positive for the math to work. I chose \(x=2\) to evaluate this, which leads to \(y = \frac{3}{2}\) \(2(2) - 2(\frac{3}{2}) = 1\) Are \(X\) and \(Y\) both positive? Yes
If x is a negitive number, then y must be a negitive for the math to work. I chose \(x=-2\) to evaluate this, which leads to \(y= \frac{-5}{2}\) \(2(-2) - 2(\frac{-5}{2}) = 1\) Are \(X\) and \(Y\) both positive? No
From these examples, we can also see that \(x\) is always \(\frac{1}{2}\) more than \(y\) -----> \(x=y+\frac{1}{2}\) We have also learned that both variables must be the same sign
1) is not sufficient
2) \(\frac{x}{y} > 1\)
First thing this tells me is that \(x\) and \(y\) are both the same sign because the result is positive It also tells me that \(|x| >|y|\), because the absolute numerator MUST be larger than the absolute denominator to be grater than 1.
So far this tells me nothing, but let's throw in some numbers to see what is happening: If \(x\) is a positive number, than \(y\) must be positive. I picked \(x = 4\), so y must be a positive number less than \(4\); I chose \(y = 2\). \(\frac{4}{2} = 2\) which is greater than \(1\) Are \(X\) and \(Y\) both positive? Yes
If \(x\) is negitive number, than \(y\) must be negitive. I picked \(x = -4\), so \(y\) must be a negitive number whose ABSOLUTE value is less than \(4\). I chose \(y = -2\) \(\frac{-4}{-2} = 2\) which is greater than \(1\) Are \(X\) and \(Y\) both positive? No
2) is not sufficient
1+2) We have three conditions established from 1) and 2): c1 - The signs of \(x\) and \(y\) must be the same c2 - The absolute value of \(x\) is larger than the absolute value of \(y\) c3 - \(x\) is always \(\frac{1}{2}\) more than \(y\) ----> \(x=y+\frac{1}{2}\)
We also have some examples used thus far when evaluating statement 1 by itself, let's see what meets the criteria once the conditions are considered simultaneously:
- Both positive; \(x = 2\) and \(y = \frac{3}{2}\) c1 - pass, signs are the same c2 - pass, \(2 > \frac{3}{2}\) c3 - pass, \(2 = \frac{3}{2} + \frac{1}{2}\) 1) \(2x-2y=1\); yes, \(2(2) - 2(\frac{3}{2})=1\) 2) \(\frac{x}{y} > 1\); yes, \(\frac{2}{(3/2)} = \frac{4}{3}\); \(\frac{4}{3}>1\)
- Both negitive; No values will fit this condition when considering both statements: This idea violates c2 (\(|x|\) is not larger than \(|y|\)); when a negitive value for \(x\) is \(\frac{1}{2}\) greater than \(y\), the absolute value of the numerator is always going to be smaller than the denominator , making \(\frac{x}{y} < 1\). Therefore, both being positive is the only option to fit both statements.
Example: \(x = -2\), so \(y = \frac{-5}{2}\) as per what we discovered in statement one, \(x = y+\frac{1}{2}\) When applying these values to statement 2, we can see that \(\frac{x}{y} = \frac{-2}{(-5/2)} = .8< 1\)
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1 [#permalink]
18 Nov 2013, 04:39
1
This post received KUDOS
I don't think we need any calculations here at all.
A) 2X-2Y=1 --> X-Y=1/2 this only means X has to be ahead of (or to the right of) Y on the number line by 1/2. Both X could be +ve or -ve or X +ve and Y -ve. Not sufficient
B) X/Y >1 means two things 1. Both have to have the same sign and 2. Abs(X)>Abs(Y). Not sufficient alone
A+B => Only on the right side of zero on the number line, both X could be ahead of Y and its absolute value greater than Y. Hence C _________________
Please consider giving 'kudos' if you like my post and want to thank
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1 [#permalink]
30 May 2014, 22:41
1
This post received KUDOS
Are x and y both positive?
1) 2x-2y =1 2) x/y>1
Soln.:
Statement 1: 2x-2y=1 So, 2(x-y)=1 So, x – y = 1/2 So, x = y + ½ But y may still be negative. So insufficient.
Statement 2: x/y>1
(NOTE that we cannot change this to x>y, because if y is negative then inequality sign will change and we don’t know at this stage if y is +ve or –ve.)
1 will be positive only if x and y are both positive, OR if x and y are both negative. So statement 2 too is insufficient by itself.
Statements 1 & 2 together:
Whenever there is an equation and an inequality for 2 variables, try to substitute value of variable derived from the equation into the inequality.
Since x/y>1, Substituting value of x from Statement 1, (Y + ½)/y > 1 So, (2y+1)/2y > 1 So, 1 + 1/2y > 1 So, 1/2y > 0 So, (½) x (1/y) > 0 If y was negative, the above value would be less than 0 not greater than 0. Also if y was zero, the equation value would still not be greater than zero. Also, x/y>1. So, y cannot be zero. Therefore, y is positive. Since x = y + ½ Therefore, x is also positive. SUFFICIENT.
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1 [#permalink]
30 Aug 2014, 06:00
1
This post received KUDOS
Expert's post
bgpower wrote:
Hi guys,
After having this problem wrong (E), I though about it for a moment and wanted to validate my thinking.
(1) states that x-y=1/2. By itself it doesn't help us understand whether x and y are both positive or negative. Both are possible. (2) x/y>1. Again, both can be possible.
(1+2) From x/y>1 we know that X>Y. Using this in (1) you understand that X and Y have to be positive, because in the scenario that we considered in (1) only if Y would have been bigger than X could it compensate for the a negative X with the double negation of the negative sign. Example: X=-4, Y=-6 => (-4)-(-4,5)=0,5=1/2. Now that we know that this can't be the case, this automatically means that X and Y are both positive.
The red part is not correct.
\(\frac{x}{y}>1\) does not mean that \(x>y\). If both x and y are positive, then \(x>y\), BUT if both are negative, then \(x<y\).
From (2) \(\frac{x}{y}>1\), we can only deduce that x and y have the same sigh (either both positive or both negative). _________________
Remember, in inequalities, until you know the sign of the variables (y in this case) you MUST not divide or multiply by a variable.
In the given question, x/y >1 ---> you can only multiply by y if you know that y >0.
Case 1, y > 0 ---> x/y > 1 ---> x> y (correct)
Case 2, y <0 ---> x/y > 1 ---> you can not say x>y as lets say y = -2 and x = -3 then x/y =3/2 > 1 but in this case y > x . This incogruity occurs as for negative numbers , you need to switch the inequality sign when you multiply by a negative number.
This is the reason why you can not multiply or divide by a variable until you are 100% sure of the sign of the inequality (> or <0) _________________
Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1 [#permalink]
05 Aug 2015, 06:07
1
This post received KUDOS
Expert's post
Matthias15 wrote:
Hi,
While I see that translating (x/y)>1 into x>y must be wrong, as clearly it lets me use a different range of numbers (and is the reason I chose E instead of C), I don't understand what is wrong with my algebra.
Why can't I multiply (x/y) * y > 1 * y and get x>y?
Classroom Centre Address: GMATinsight 107, 1st Floor, Krishna Mall, Sector-12 (Main market), Dwarka, New Delhi-110075 ______________________________________________________ Please press the if you appreciate this post !!
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1 [#permalink]
11 May 2010, 03:40
I'm still not clear why X and Y has to be positive when X/Y > 1. Can you please explain the way you combined taking both X and Y to be positive and also X and Y as negative. Since in either case X/Y will be > 1.
The “3 golden nuggets” of MBA admission process With ten years of experience helping prospective students with MBA admissions and career progression, I will be writing this blog through...
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...