Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

As a bicycle salesperson, Norman earns a fixed salary of $20 [#permalink]
17 Mar 2011, 05:39

3

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

45% (medium)

Question Stats:

49% (02:24) correct
51% (01:17) wrong based on 150 sessions

As a bicycle salesperson, Norman earns a fixed salary of $20 per week plus $6 per bicycle for the first 6 bicycles he sells, $12 per bicycle for the next 6 bicycles he sells, and $18 per bicycle for every bicycle sold after first 12. This week, he earned more than twice as much as he did last week. If he sold x bicycles last week and y bicycles this week, which of the following statements must be true?

I. y>2x II. y>x III. y>3

A. I only B. II only C. I and II D. II and III E. I, II, III

As a bicycle salesperson, Norman earns a fixed salary of $20 per week plus $6 per bicycle for the first 6 bicycles he sells, $12 per bicycle for the next 6 bicycles he sells, and $18 per bicycle for every bicycle sold after first 12. This week, he earned more than twice as much as he did last week. If he sold x bicycles last week and y bicycles this week, which of the following statements must be true?

I. y>2x II. y>x III. y>3

A. I only B. II only C. I and II D. II and III E. I, II, III

II and III are obviously always true:

II. y>x --> since this week, Norman earned more than he did last week and the total salary is in direct relationship with the # of bicycle sold, then y (# of bicycle sold this week) must be more than x (# of bicycle sold last week);

III. y>3 --> if Norman sold 3 bicycles this week then this week he earned 20+3*6=$38, which cannot be more than twice as much as he earned the last week, since the minimum salary is fixed to $20. So y must be more than 3;

I. y>2x --> if y=12 and x= 6 then this week Norman earned 20+6*6+6*12=$128, and the last week he earned 20+6*6=$56. $128 is more than twice as much as $56, so the condition in the stem holds but y=2x, which means that III is not always true.

As a bicycle salesperson, Norman earns a fixed salary of $20 per week plus $6 per bicycle for the first six bicycles he sells, $12 per bicycle for the next six bicycles he sells, and $18 per bicycle for every bicycle sold after the first 12. This week, Norman earned more than twice as much as he did last week. If he sold x bicycles last week and y bicycles this week, which of the following statements must be true?

I. y > 2x

II. y > x

III. y > 3

A. I only B. II only C. I and II D. II and III E. I, II, and III

As a bicycle salesperson, Norman earns a fixed salary of $20 per week plus $6 per bicycle for the first six bicycles he sells, $12 per bicycle for the next six bicycles he sells, and $18 per bicycle for every bicycle sold after the first 12. This week, Norman earned more than twice as much as he did last week. If he sold x bicycles last week and y bicycles this week, which of the following statements must be true?

I. y > 2x

II. y > x

III. y > 3

A. I only B. II only C. I and II D. II and III E. I, II, and III

I think II and III are pretty straight forward and I am assuming you have no problem deciding about those.

Let me add here what I thought about I. One way is that you can try to find a case where he earns twice as much but doesn't sell twice as many bikes. Another is a more intuitive approach. You know that initially, he has to sell more bikes to make some money (he earns only $6 from first 6 bikes and $12 from next 6 bikes. First $20 is too small an amount). Later on, he gets $18 per bike which means he makes money at a much faster rate. Hence, later on, he can double the amount he made previously very quickly and by selling far fewer bikes. Hence it is not essential that he needs to sell twice as many bikes to make twice as much money. Hence y may not be greater than 2x. _________________

Re: As a bicycle salesperson, Norman earns a fixed salary of $20 [#permalink]
01 Dec 2012, 22:00

Test the inequalities: I. y>2x Let x = 1 bicycle; Earnings: 26 dollars Let y = 3 bicylce; Earnings: 38 dollars Is 38 more than twice of 26? NO! II. y > x Surely, there must be more bicycles sold in the second week. Always true! YES! III. y>3 Testing I, we found that when y = 3 and x = 1, we still couldn't achieve the condition that the second week's earning is more than twice the first. Therefore, y must be greater than 3. YES!

Re: As a bicycle salesperson, Norman earns a fixed salary of $20 [#permalink]
29 Mar 2013, 00:19

AnkitK wrote:

As a bicycle salesperson, Norman earns a fixed salary of $20 per week plus $6 per bicycle for the first 6 bicycles he sells, $12 per bicycle for the next 6 bicycles he sells, and $18 per bicycle for every bicycle sold after first 12. This week, he earned more than twice as much as he did last week. If he sold x bicycles last week and y bicycles this week, which of the following statements must be true?

I. y>2x II. y>x III. y>3

A. I only B. II only C. I and II D. II and III E. I, II, III

Given:

1. The number of bicycles sold last week = x 2. The number of bicycles sold this week = y 3. Let earnings of last week and this week be s1 and s2 resp. s2> 2s1

Question:

1. Is y > 2x 2. Is y > x 3. Is y > 3

Basically the question asks us to relate number of bicycles sold in each of 2 weeks based on the relation between the earnings in those 2 weeks.

1. Earnings in the current week can be higher than that of the last week only when the number of bicycles sold is higher in the current week. i.e., only when y>x 2. If the number of bicycles sold during the current week <4, then the earnings in the current week cannot be more than double that of the previous week. 3. Now let us assume y=2x. Since we are assuming twice the bicycles are sold this week over that of the previous week , if we take x=18, then y=36. 4. Let us calculate s1 and s2. s1= earnings from the first 12 bicycles + earnings from the next 6 bicycles = 128+ 108= 236 s2= earnings from the 12 bicycles+ earnings from the next 24 bicycles= 128+ 432= 560 5. s2>2s1 even when y=2x

We see from (1) above statement II is true, from (2) above statement III is true, from (5) above statement I need not be true.

As a bicycle salesperson, Norman earns a fixed salary of $20 per week plus $6 per bicycle for the first 6 bicycles he sells, $12 per bicycle for the next 6 bicycles he sells, and $18 per bicycle for every bicycle sold after first 12. This week, he earned more than twice as much as he did last week. If he sold x bicycles last week and y bicycles this week, which of the following statements must be true?

I. y>2x II. y>x III. y>3

A. I only B. II only C. I and II D. II and III E. I, II, III

II and III are obviously always true:

II. y>x --> since this week, Norman earned more than he did last week and the total salary is in direct relationship with the # of bicycle sold, then y (# of bicycle sold this week) must be more than x (# of bicycle sold last week);

III. y>3 --> if Norman sold 3 bicycles this week then this week he earned 20+3*6=$38, which cannot be more than twice as much as he earned the last week, since the minimum salary is fixed to $20. So y must be more than 3;

I. y>2x --> if y=12 and x= 6 then this week Norman earned 20+6*6+6*12=$128, and the last week he earned 20+6*6=$56. $128 is more than twice as much as $56, so the condition in the stem holds but y=2x, which means that III is not always true.

Answer: D.

Bunuel, nice approach +1

On I though, I'm having some issues picking the correct numbers, how can I decide which numbers to use to prove this case not necessarily true?

I'm having some issues picking the correct numbers, how can I decide which numbers to use to prove this case not necessarily true?

Cheers! J

There are no correct/incorrect numbers. You can just try to understand the logic using numbers.

6 bikes - $6 each i.e. total $36 next 6 bikes - $12 each i.e. total $72 So 12 bikes for a total sum of $108

But for every subsequent bike, he gets $18 so the next $108 he will be able to make by selling just 6 bikes. So even if he earns twice as much as before, he doesn't need to sell twice as many bikes. _________________

Re: As a bicycle salesperson, Norman earns a fixed salary of $20 [#permalink]
03 Aug 2014, 15:19

VeritasPrepKarishma wrote:

piyushksharma wrote:

As a bicycle salesperson, Norman earns a fixed salary of $20 per week plus $6 per bicycle for the first six bicycles he sells, $12 per bicycle for the next six bicycles he sells, and $18 per bicycle for every bicycle sold after the first 12. This week, Norman earned more than twice as much as he did last week. If he sold x bicycles last week and y bicycles this week, which of the following statements must be true?

I. y > 2x

II. y > x

III. y > 3

A. I only B. II only C. I and II D. II and III E. I, II, and III

I think II and III are pretty straight forward and I am assuming you have no problem deciding about those.

Let me add here what I thought about I. One way is that you can try to find a case where he earns twice as much but doesn't sell twice as many bikes. Another is a more intuitive approach. You know that initially, he has to sell more bikes to make some money (he earns only $6 from first 6 bikes and $12 from next 6 bikes. First $20 is too small an amount). Later on, he gets $18 per bike which means he makes money at a much faster rate. Hence, later on, he can double the amount he made previously very quickly and by selling far fewer bikes. Hence it is not essential that he needs to sell twice as many bikes to make twice as much money. Hence y may not be greater than 2x.

Hi Karishma,

I'm intrigued by your intuitive approach.

To backtrack a little -- word problems as a whole seem to be the biggest time suck for me. I spent 4 minutes on this problem, and although I got it right, I can't seem to figure out how to speed things up when it comes to word problems as such.

Is there a strategy you recommend to tackle word problems in general? I know that this is a vague question but any help would be appreciated. Can you recommend other word problems to do to help with practice?

Regarding what you said, to me, 2 seemed very straight forward but I still went and checked statement 3. Yes, in hindsight, all of this looks very simple after reading your explanation but I'm not as certain during the test.

Re: As a bicycle salesperson, Norman earns a fixed salary of $20 [#permalink]
04 Aug 2014, 20:55

Expert's post

russ9 wrote:

VeritasPrepKarishma wrote:

piyushksharma wrote:

As a bicycle salesperson, Norman earns a fixed salary of $20 per week plus $6 per bicycle for the first six bicycles he sells, $12 per bicycle for the next six bicycles he sells, and $18 per bicycle for every bicycle sold after the first 12. This week, Norman earned more than twice as much as he did last week. If he sold x bicycles last week and y bicycles this week, which of the following statements must be true?

I. y > 2x

II. y > x

III. y > 3

A. I only B. II only C. I and II D. II and III E. I, II, and III

I think II and III are pretty straight forward and I am assuming you have no problem deciding about those.

Let me add here what I thought about I. One way is that you can try to find a case where he earns twice as much but doesn't sell twice as many bikes. Another is a more intuitive approach. You know that initially, he has to sell more bikes to make some money (he earns only $6 from first 6 bikes and $12 from next 6 bikes. First $20 is too small an amount). Later on, he gets $18 per bike which means he makes money at a much faster rate. Hence, later on, he can double the amount he made previously very quickly and by selling far fewer bikes. Hence it is not essential that he needs to sell twice as many bikes to make twice as much money. Hence y may not be greater than 2x.

Hi Karishma,

I'm intrigued by your intuitive approach.

To backtrack a little -- word problems as a whole seem to be the biggest time suck for me. I spent 4 minutes on this problem, and although I got it right, I can't seem to figure out how to speed things up when it comes to word problems as such.

Is there a strategy you recommend to tackle word problems in general? I know that this is a vague question but any help would be appreciated. Can you recommend other word problems to do to help with practice?

Regarding what you said, to me, 2 seemed very straight forward but I still went and checked statement 3. Yes, in hindsight, all of this looks very simple after reading your explanation but I'm not as certain during the test.

Any thoughts would be appreciated.

Thanks

Hey Russ,

Familiarity creates intuition. When you see a lot of word problems, you are often able to see what is going to work and usually it is correct. Till a few years back, I use to rely on algebra (equations) to solve all word problems. Then, a mentor forced me to see the big picture, the reason behind every step and how the steps are meant for machines only - how we are quite capable of using reason and logic to solve most questions in a reasoning based test such as GMAT. Now the problem is that when you need to give a solution to someone, just saying that use intuition is not helpful. You can barely explain it in a face-to-face situation.

Also, confidence comes with practice. You will start feeling confident in your inferences from the given data once you see that you are getting most of them right on practice questions.

I will suggest you to start every word problem by trying to infer whatever you can from the given data. Try to minimize your use of equations (you can't let them go completely). Look for alternative solutions for every problem. Soon. you will start coming up with your own intuitive solutions. _________________