Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
At a certain university, the ratio of the number of teaching [#permalink]
04 Jun 2009, 20:11
1
This post received KUDOS
6
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
45% (medium)
Question Stats:
63% (01:55) correct
37% (00:57) wrong based on 345 sessions
At a certain university, the ratio of the number of teaching assistants to the number of students in any course must always be greater than 3:80. At this university , what is the maximum number of students possible in a course that has 5 teaching assistants?
Re: problem solving question on ratios [#permalink]
05 Jun 2009, 00:46
1
This post received KUDOS
Not sure whether this is the best possible way but just the way how I solve it.
Teaching Assistants = TA Students = S
Let assume the ratio of TA/S = \(3/80\) (Just putting aside the requirement it must be greater)
Let say x be the maximum no of students possible with 5 teaching assistants = \(3/80 = 5/x\)
\(x = 400/3 = 133.33\). Now for ratio to be greater than \(3/80\) reduce the denominator. So just rounded it to lowest integer as number of student can't be in decimal. The new ratio is \(5/133\), which is less than \(3/80\) thus, 133 is the maximum number of students possible.
Re: problem solving question on ratios [#permalink]
16 Dec 2010, 13:36
can someone explain in further detail the relationship between the teaching assistants to the number of students in any course must always be greater than 3:80 and how to reason through this portion? I understand how to solve for x. Once I was at this point I think was stumped on which number to select and inevitably chose to round up. My rational being .33 of a student is not possible therefore it must represent the position of an entire student. Thoughts? Help?
Re: problem solving question on ratios [#permalink]
16 Dec 2010, 13:47
5
This post received KUDOS
Expert's post
2
This post was BOOKMARKED
spyguy wrote:
can someone explain in further detail the relationship between the teaching assistants to the number of students in any course must always be greater than 3:80 and how to reason through this portion? I understand how to solve for x. Once I was at this point I think was stumped on which number to select and inevitably chose to round up. My rational being .33 of a student is not possible therefore it must represent the position of an entire student. Thoughts? Help?
At a certain university, the ratio of the number of teaching assistants to the number of students in any course must always be greater than 3:80. At this university, what is the maximum number of students possible in a course that has 5 teaching assistants? A. 130 B. 131 C. 132 D. 133 E. 134
Given: \(\frac{assistants}{students}>\frac{3}{80}\) --> \(assistants=5\), so \(\frac{5}{s}>\frac{3}{80}\) --> \(s_{max}=?\)
\(\frac{5}{s}>\frac{3}{80}\) --> \(s<\frac{5*80}{3}\approx{133.3}\) --> so \(s_{max}=133\).
Answer: D.
\(\frac{assistants}{students}>\frac{3}{80}\) relationship means that if for example # of assistants is 3 then in order \(\frac{assistants}{students}>\frac{3}{80}\) to be true then # of students must be less than 80 (so there must be less than 80 students per 3 assistants) on the other hand if # of students is for example 80 then the # of assistants must be more than 3 (so there must be more than 3 assistants per 80 students).
At a certain restaurant, the ratio of the number of chefs to the number of burgers on any day must always be greater than 3:80. At this restaurant, what is the maximum number of burgers possible on a day that has 5 chefs.
A) 130 B) 131 C) 132 D) 133 E) 134
Please help. The phrase "must always be greater than" is completely throwing me off.
[EDIT] The same problem has been solved elsewhere: problem-solving-question-on-ratios-79240.html
Sorry, I couldn't delete this post! _________________
If you like it, Kudo it!
"There is no alternative to hard work. If you don't do it now, you'll probably have to do it later. If you didn't need it now, you probably did it earlier. But there is no escaping it."
Re: Chefs to burgers [#permalink]
12 Mar 2012, 22:49
boomtangboy wrote:
hi,
Give me a Big Kudoos Meal Combo if this helps
Hi BoomTang, great answer! +1 _________________
If you like it, Kudo it!
"There is no alternative to hard work. If you don't do it now, you'll probably have to do it later. If you didn't need it now, you probably did it earlier. But there is no escaping it."
Re: Chefs to burgers [#permalink]
12 Mar 2012, 23:40
Expert's post
budablasta wrote:
At a certain restaurant, the ratio of the number of chefs to the number of burgers on any day must always be greater than 3:80. At this restaurant, what is the maximum number of burgers possible on a day that has 5 chefs.
A) 130 B) 131 C) 132 D) 133 E) 134
Please help. The phrase "must always be greater than" is completely throwing me off.
[EDIT] The same problem has been solved elsewhere: problem-solving-question-on-ratios-79240.html
Re: At a certain university, the ratio of the number of teaching [#permalink]
05 Apr 2015, 05:25
Hello from the GMAT Club BumpBot!
Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).
Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email. _________________
Re: At a certain university, the ratio of the number of teaching [#permalink]
26 Jan 2016, 09:18
budablasta wrote:
At a certain restaurant, the ratio of the number of chefs to the number of burgers on any day must always be greater than 3:80. At this restaurant, what is the maximum number of burgers possible on a day that has 5 chefs.
A) 130 B) 131 C) 132 D) 133 E) 134
Please help. The phrase "must always be greater than" is completely throwing me off.
[EDIT] The same problem has been solved elsewhere: problem-solving-question-on-ratios-79240.html
Sorry, I couldn't delete this post!
same for me Please help. The phrase "must always be greater than" states it has to be 134 & not 133 what is the catch here?
Re: At a certain university, the ratio of the number of teaching [#permalink]
26 Jan 2016, 13:53
1
This post received KUDOS
The question states that the ratio must always be greater than 3:80, not the number of students (or burgers). So when you calculate the ratio \(\frac{5}{x}>\frac{3}{80}\), increasing the value of \(x\) will decrease the ratio \(\frac{5}{x}\), and decreasing the value of \(x\) will increase the ratio \(\frac{5}{x}\).
If you calculate the number of burgers to be 133.3, then decide whether to round up or down, understand what will happen to the ratio of \(\frac{5}{x}\).
If \(\frac{5}{133.33}=\frac{3}{80}\), and that is the minimum (because \(\frac{5}{x}\) must always be greater than \(\frac{3}{80}\)), what happens if you round \(x\) up to 134? Is \(\frac{5}{134}\) > or < \(\frac{3}{80}\)?
As explained above, if you increase \(x\) to 134, then the ratio \(\frac{5}{x}\) is decreased, and it will be less than the minimum of \(\frac{3}{80}\). If you round \(x\) down to 133, then the ratio \(\frac{5}{x}\) will increase, and you will not violate the condition that it must always be greater than \(\frac{3}{80}\).
Looking at it another way, if we know that the ratio of assistants to students must always be greater than 3:80, then we know that for any given number of assistants, there is a maximum number of students allowed. For every assistant, a maximum of 26.66 students are allowed (80/3). So if there is 1 assistant and 27 students, that is too many. 26 is the maximum number of students allowed if there is only 1 assistant in order to keep the ratio greater than 3:80. Using the same logic, if there are 5 assistants, then the maximum number of students allowed is 133.33. If there were 134 students that would be more than the maximum, therefore the maximum number of students allowed is 133.
Re: At a certain university, the ratio of the number of teaching [#permalink]
27 Jan 2016, 05:59
Expert's post
scorpio7 wrote:
At a certain university, the ratio of the number of teaching assistants to the number of students in any course must always be greater than 3:80. At this university , what is the maximum number of students possible in a course that has 5 teaching assistants?
Classroom Centre Address: GMATinsight 107, 1st Floor, Krishna Mall, Sector-12 (Main market), Dwarka, New Delhi-110075 ______________________________________________________ Please press the if you appreciate this post !!
gmatclubot
Re: At a certain university, the ratio of the number of teaching
[#permalink]
27 Jan 2016, 05:59
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...