Hi guys, having a little trouble distinguishing the two.

Comb = unordered where order doesen't matter.

perm = order matters.

But, look at this questions:

Question wrote:

A certain university will select 1 of 7 candidates eligible to fill a position in the mathematics department and 2 of 10 candidates eligible to fill 2 identical positions in the computer science department. If none of the candidates is eligible for a position in both departments, how many different sets of 3 candidates are there to fill the 3 positions?

To me, the second part of the question looks like a perm. Since there are 2 seats and therefore 2 candidates (hence they are distinguishable) wouldn't it be 10!/8!=90?

I know I am wrong. Can someone clarify how I can make a better decision distinguishing the two.

Look at another one:

**Quote:**

The principal of a high school needs to schedule observations of 6 teachers. she plans to visit one teacher each day for a work week (M-F) so will only have time to see 5 of the teachers. How many different observation schedules can she create?

To me there is no order here as the principal can meet any of the 5 teachers any day! The order in which she meets those "5" selected teachers does not matter. Hence, shouldnt this be a combination problem?

Am I missing some key rule here? or am I just losing it!

Thanks,