Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Does line Ax + By + C = 0 (A is not 0) intersect the x-axis on the negative side?

1. BA <0> 0

Please explain your answer.

Getting E.

Ax + By + C = 0
By = -Ax - C (cannot divide by B just yet since B could be 0)

Stat 1:
Tells us that B is not 0 and that A and B have the same sign.
y = - (A/B)x - C
To find x, y = 0:
-(A/B)x = C
x = -(B/A) * C
B/A will have the same sign therefore -(B/A) will be negative which makes me think that the answer to the stem is yes. However, what if C = 0? The answer to the stem is no. Insuff.

Stat 2:
Tells us that A & C have opposite signs. I don't think that this alone helps us in determine the answer. Insuff.

Together:
If A is +ve and C is -ve then x intercept is +ve
If A is -ve and C is +ve then x intercept is -ve
Insuff.

Re: Does line Ax + By + C = 0 (A is not 0) intersect the x-axis [#permalink]
12 Nov 2013, 22:23

@laserglare

Yes, to find the x-intercept of a line, the point where it intersects the x-axis, we set the y-coordinate to 0. You correctly replaced y as 0 in the equation Ax+By+C=0, which gave you the x-intercept of -C/A.

Here 2 alone is sufficient because if AC>0, then we have either both A and C are positive or both A and C are negative, in both scenarios -C/A is negative, meaning the x-intercept is negative or intersects the x-axis to the left of the origin.

Re: Does line Ax + By + C = 0 (A is not 0) intersect the x-axis [#permalink]
12 Nov 2013, 22:29

1

This post received KUDOS

Expert's post

laserglare wrote:

i was doing this on the gmatclub tests and i cannot figure out why all we need is x = -c/a

"So, the x-intercept of line ax+by+c=0 is x=−c/a." I plugged in 0 so ax+ by+ c = 0 then y = ( -ax - c ) / b

was i supposed to think of this question like this ax + b (0) + c = 0 ax + c = 0 x = -c/a

then use that equation to figure out what x is???

(when i was doing this before viewing the solution, i assumed that we would need a/b to solve because -a/b * x.)

Given Ax + By + C = 0 is the equation of a line. You need to figure out whether it intersects x axis on the negative side i.e. in the second quadrant. You want to know that when the line crosses the x axis (if it does), is x co-ordinate negative there? When does a line cross the x axis? When its y co-ordinate is 0. So how will you know the point where the line crosses the x axis? You put y = 0. Ax + B*0 + C = 0 x = -C/A So when y = 0, x = -C/A

We want to know whether this x cor-ordinate (-C/A) is negative. It will be negative when C/A is positive i.e. both C and A will have the same sign (either both positive or both negative) Statement 2 tells you that C and A have the same sign (since their product is positive). Hence it is enough alone.

Re: Does line Ax + By + C = 0 (A is not 0) intersect the x-axis [#permalink]
13 Nov 2013, 01:04

1

This post received KUDOS

Expert's post

bmwhype2 wrote:

Does line Ax + By + C = 0 (A is not 0) intersect the x-axis on the negative side?

(1) BA < 0. (2) AC > 0.

M18-13

Does line Ax + By + C = 0 (A is not 0) intersect the x-axis on the negative side?

ax+by+c=0 is equation of a line. Note that the line won't have interception with x-axis when a=0 (and c\neq{0}): in this case the line will be y=-\frac{c}{b} and will be parallel to x -axis.

Now, in other cases (when a\neq{0}) x-intercept of a line will be the value of x when y=0, so the value of x=-\frac{c}{a}. Question basically asks whether this value is negative, so question asks is -\frac{c}{a}<0? --> is \frac{c}{a}>0? --> do c and a have the same sign?

(1) BA < 0. Not sufficient as we can not answer whether c and a have the same sign. (2) AC > 0 --> c and a have the same sign. Sufficient.