Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

i think the answer is 60.. phew!! tough one.. i dont know whether my approach is correct.. C&C welcome..

starting from ground up .. consider the simplest scenario --------- 2 pairs of siblings - (ab) (cd)

possible team combinations: a c + b d & a d + b c

the way I look at it is .. a[c/ d] = two ways makes sense.. if it doesnt .. pls stop reading here.. rest will all be gibberish.. --------

3 pairs of siblings - (ab) (cd) (ef ) possible combinations

a [c/ d/ e/ f] = 4 ways

remaining players are always similar to (b) (d) (ef) which can be arranged in 2 ways in turn

=> two players without their siblings and one sibling pair

so total = 8 ways

----------

4 pairs of siblings (ab) (cd) (ef) (gh)

a [c/ d/ e/ f/ g/ h] = 6 ways and remainng will be similar to

(b) (d) (ef) (gh)

I can arrange them by picking the first two (bd) and rearrange the remaining 4 into two teams = 2 ways or I can pick one single sibling and other from sibling pair like b [e/ f/ g/ h] and with d in two ways = 8 ways

It’s quickly approaching two years since I last wrote anything on this blog. A lot has happened since then. When I last posted, I had just gotten back from...

Since my last post, I’ve got the interview decisions for the other two business schools I applied to: Denied by Wharton and Invited to Interview with Stanford. It all...

Marketing is one of those functions, that if done successfully, requires a little bit of everything. In other words, it is highly cross-functional and requires a lot of different...