Find all School-related info fast with the new School-Specific MBA Forum

It is currently 24 Nov 2014, 08:26

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

DS: Curve (m09q03)

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
5 KUDOS received
Retired Moderator
User avatar
Joined: 18 Jul 2008
Posts: 997
Followers: 9

Kudos [?]: 82 [5] , given: 5

DS: Curve (m09q03) [#permalink] New post 07 Jan 2009, 15:45
5
This post received
KUDOS
7
This post was
BOOKMARKED
Does the curve (x - a)^2 + (y - b)^2 = 16 intersect the Y axis?

1. a^2 + b^2 > 16
2. a = |b| + 5

I have no idea how to tackle this... please explain. Thanks.

[Reveal] Spoiler: OA
B

Source: GMAT Club Tests - hardest GMAT questions
Kaplan Promo CodeKnewton GMAT Discount CodesVeritas Prep GMAT Discount Codes
Manager
Manager
avatar
Joined: 04 Jan 2009
Posts: 243
Followers: 1

Kudos [?]: 9 [0], given: 0

Re: DS: Curve [#permalink] New post 07 Jan 2009, 18:01
(x-a)^2+(y-b)^2 = 16
is a circlce with centre(a,b) and radius 4.

(1)=>distance of (a,b) from origin in the coordinate system is>4. There are multiple circles with their center on the x-axis which will not intersect y-axis. Then again there are circles with center on the y-axis which will intersect y-axis. hence, not sufficient.
(2)=>a=modb+5
Thus, the circle has center at (5+b,b) or (5-b,b)
I solved the equn of circle with the y-axis (x=0).
we get
y-b = sqrt(b^2-10b-9) or sqrt(b^2+10b-9)
in any case it is possible to have imaginary solution for some values of b and not others.
hence, not sufficient.
Intern
Intern
avatar
Joined: 05 Jan 2009
Posts: 6
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: DS: Curve [#permalink] New post 07 Jan 2009, 20:17
I am in doubt.
from 2) a= |b|+5

I take that to mean a is always positive and >= 5. With a radius of 4 and x cooridnate >=5 it cannot intersect the y axis.

2 should be suff.

Please correct me if my reasoning is wrong.
1 KUDOS received
CEO
CEO
User avatar
Joined: 29 Aug 2007
Posts: 2500
Followers: 55

Kudos [?]: 521 [1] , given: 19

Re: DS: Curve [#permalink] New post 07 Jan 2009, 20:36
1
This post received
KUDOS
bigfernhead wrote:
Does the curve (x-a)^2 + (y-b)^2 = 16 intersect the Y axis?

1. a^2+b^2 > 16
2. a = |b| + 5

I have no idea how to tackle this... please explain. Thanks.


Agree with E.

Equation of the circle: (x-a)^2 + (y-b)^2 = 16
Origin = (a, b) & redius of this circle = 4

The values of (a, b) doesnot decide the position of circle. they are x and y along with a and b determin the circle's location.

We need to know
1: a^2 + b^2 > 16
a and b could be anything because their squares are +ve and > 16.

2: a = lbl + 5.
now we know that: a is +ve and is > 5 but b? we do not know. it (b) could be anything.

1&2: are we getting anything extra bit of infromation from 2 on 1 or vice versa. No.

so E.
_________________

Verbal: new-to-the-verbal-forum-please-read-this-first-77546.html
Math: new-to-the-math-forum-please-read-this-first-77764.html
Gmat: everything-you-need-to-prepare-for-the-gmat-revised-77983.html


GT

Manager
Manager
avatar
Joined: 04 Jan 2009
Posts: 243
Followers: 1

Kudos [?]: 9 [0], given: 0

Re: DS: Curve [#permalink] New post 08 Jan 2009, 17:24
you are right!
The center of the circle is atleast 5 units away from the origin; so no intersection with x=0 is possible. I wonder why I could not derive it from my equation solving though.
GMAT TIGER wrote:
bigfernhead wrote:
Does the curve (x-a)^2 + (y-b)^2 = 16 intersect the Y axis?

1. a^2+b^2 > 16
2. a = |b| + 5

I have no idea how to tackle this... please explain. Thanks.


Agree with E.

Equation of the circle: (x-a)^2 + (y-b)^2 = 16
Origin = (a, b) & redius of this circle = 4

The values of (a, b) doesnot decide the position of circle. they are x and y along with a and b determin the circle's location.

We need to know
1: a^2 + b^2 > 16
a and b could be anything because their squares are +ve and > 16.

2: a = lbl + 5.
now we know that: a is +ve and is > 5 but b? we do not know. it (b) could be anything.

1&2: are we getting anything extra bit of infromation from 2 on 1 or vice versa. No.

so E.

_________________

-----------------------
tusharvk

Manager
Manager
avatar
Joined: 08 Jul 2009
Posts: 177
Followers: 3

Kudos [?]: 28 [0], given: 13

Re: DS: Curve (m09q03) [#permalink] New post 25 Aug 2009, 20:32
how is possible that if radius is 4, then a^2 + b^2 >16. What this eq is telling me is contradicting with the question. Isn't it?
Manager
Manager
User avatar
Joined: 14 Aug 2009
Posts: 123
Followers: 2

Kudos [?]: 91 [0], given: 13

Re: DS: Curve (m09q03) [#permalink] New post 26 Aug 2009, 05:35
Intersect with Y axis means x=0, y has a value.

so we can get a^2+(y-b)^2=16
(y-b)^2=16-a^2>=0

then just need
|a|<=4

neither 1), 2) nor combining them, can't get |a|<=4

Ans: E
_________________

Kudos me if my reply helps!

Intern
Intern
avatar
Joined: 20 Feb 2009
Posts: 12
Followers: 1

Kudos [?]: 1 [0], given: 1

Re: DS: Curve [#permalink] New post 27 Sep 2009, 11:38
GMAT TIGER wrote:
Equation of the circle: (x-a)^2 + (y-b)^2 = 16

Question states curve. Is this a standard equation with which we can infer that the curve is nothing but a circle?

Also, OA is given as B.

Can someone explain this?
CIO
CIO
avatar
Joined: 02 Oct 2007
Posts: 1218
Followers: 89

Kudos [?]: 705 [0], given: 334

GMAT ToolKit User
Re: DS: Curve [#permalink] New post 27 Sep 2009, 13:24
I totally agree with the explanation below. The Y axis is at X=0. Since from S2 a \ge 5, we can be sure that X coordinate of the center of the circle will be 5 points away from the Y axis. If the radius of the circle is 4 points, we are sure that the circle does NOT intersect the Y axis. We should not be concerned with what the value of b is as we have to check only the intersection with the Y axis. We would have to check the value of b only if the question asked for the intersection with the X axis where Y=0.

The "curve" here refers to the equation of the circle.

I hope the explanation makes sense. The OA is B.
nfernandes wrote:
I am in doubt.
from 2) a= |b|+5

I take that to mean a is always positive and >= 5. With a radius of 4 and x coordinate >=5 it cannot intersect the y axis.

2 should be suff.

Please correct me if my reasoning is wrong.

_________________

Welcome to GMAT Club! :)
Facebook TwitterGoogle+LinkedIn
Want to solve GMAT questions on the go? GMAT Club iPhone app will help.
Please read this before posting in GMAT Club Tests forum
Result correlation between real GMAT and GMAT Club Tests
Are GMAT Club Test sets ordered in any way?

Take 15 free tests with questions from GMAT Club, Knewton, Manhattan GMAT, and Veritas.

Take a Survey about GMAT Prep - Win Prizes!

Manager
Manager
avatar
Joined: 02 Oct 2008
Posts: 58
Followers: 5

Kudos [?]: 16 [0], given: 0

Re: DS: Curve (m09q03) [#permalink] New post 11 Dec 2009, 11:30
I go with choice E. But please someone explain let me know the correct answer and the necessary explanation.
Intern
Intern
avatar
Joined: 10 Dec 2008
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: DS: Curve (m09q03) [#permalink] New post 11 Dec 2009, 12:18
I don't understand the answer to this. Wouldn't the circle not intercept the y-axis if a is larger than 16?
3 KUDOS received
CIO
CIO
avatar
Joined: 02 Oct 2007
Posts: 1218
Followers: 89

Kudos [?]: 705 [3] , given: 334

GMAT ToolKit User
Re: DS: Curve (m09q03) [#permalink] New post 15 Dec 2009, 04:09
3
This post received
KUDOS
Hi,

You guys have to tell me what exactly is not clear in my explanation above.

You have to keep in mind that we are dealing with an equation of a circle with radius 4. a places the center of this circle closer to or farther from the Y axis. From S2 we know that a \ge 5, so the circle does not intersect the Y axis.

OA is B.
_________________

Welcome to GMAT Club! :)
Facebook TwitterGoogle+LinkedIn
Want to solve GMAT questions on the go? GMAT Club iPhone app will help.
Please read this before posting in GMAT Club Tests forum
Result correlation between real GMAT and GMAT Club Tests
Are GMAT Club Test sets ordered in any way?

Take 15 free tests with questions from GMAT Club, Knewton, Manhattan GMAT, and Veritas.

Take a Survey about GMAT Prep - Win Prizes!

1 KUDOS received
Manager
Manager
User avatar
Joined: 01 Nov 2010
Posts: 198
Location: India
Concentration: Technology, Marketing
GMAT Date: 08-27-2012
GPA: 3.8
WE: Marketing (Manufacturing)
Followers: 6

Kudos [?]: 22 [1] , given: 38

Re: DS: Curve (m09q03) [#permalink] New post 22 Dec 2010, 01:47
1
This post received
KUDOS
E is final answer.

both statement cant answer the question.
_________________

kudos me if you like my post.

Attitude determine everything.
all the best and God bless you.

Expert Post
23 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24045
Followers: 3731

Kudos [?]: 31170 [23] , given: 3270

Re: DS: Curve (m09q03) [#permalink] New post 22 Dec 2010, 02:39
23
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
321kumarsushant wrote:
E is final answer.

both statement cant answer the question.


THEORY
In an x-y Cartesian coordinate system, the circle with center (a, b) and radius r is the set of all points (x, y) such that:
(x-a)^2+(y-b)^2=r^2


Image

This equation of the circle follows from the Pythagorean theorem applied to any point on the circle: as shown in the diagram above, the radius is the hypotenuse of a right-angled triangle whose other sides are of length x-a and y-b.

If the circle is centered at the origin (0, 0), then the equation simplifies to: x^2+y^2=r^2

For more check: math-coordinate-geometry-87652.html

BACK TO THE ORIGINAL QUESTION

Does the curve (x - a)^2 + (y - b)^2 = 16 intersect the Y axis?

Curve of (x - a)^2 + (y - b)^2 = 16 is a circle centered at the point (a, \ b) and has a radius of \sqrt{16}=4. Now, if a, the x-coordinate of the center, is more than 4 or less than -4 then the radius of the circle, which is 4, won't be enough for curve to intersect with Y axis. So basically the question asks whether |a|>4: if it is, then the answer will be NO: the curve does not intersect with Y axis and if it's not, then the answer will be YES: the curve intersects with Y axis.

(1) a^2 + b^2 > 16 --> clearly insufficient as |a| may or may not be more than 4.

(2) a = |b| + 5 --> as the least value of absolute value (in our case |b|) is zero then the least value of a will be 5, so in any case |a|>4, which means that the circle does not intersect the Y axis. Sufficient.

Answer: B.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Take a Survey about GMAT Prep - Win Prizes!

2 KUDOS received
Manager
Manager
User avatar
Joined: 01 Nov 2010
Posts: 198
Location: India
Concentration: Technology, Marketing
GMAT Date: 08-27-2012
GPA: 3.8
WE: Marketing (Manufacturing)
Followers: 6

Kudos [?]: 22 [2] , given: 38

Re: DS: Curve (m09q03) [#permalink] New post 22 Dec 2010, 04:15
2
This post received
KUDOS
Bunuel wrote:
321kumarsushant wrote:
E is final answer.

both statement cant answer the question.


THEORY
In an x-y Cartesian coordinate system, the circle with center (a, b) and radius r is the set of all points (x, y) such that:
(x-a)^2+(y-b)^2=r^2


Image

This equation of the circle follows from the Pythagorean theorem applied to any point on the circle: as shown in the diagram above, the radius is the hypotenuse of a right-angled triangle whose other sides are of length x-a and y-b.

If the circle is centered at the origin (0, 0), then the equation simplifies to: x^2+y^2=r^2

For more check: math-coordinate-geometry-87652.html

BACK TO THE ORIGINAL QUESTION

Does the curve (x - a)^2 + (y - b)^2 = 16 intersect the Y axis?

Curve of (x - a)^2 + (y - b)^2 = 16 is a circle centered at the point (a, \ b) and has a radius of \sqrt{16}=4. Now, if a, the x-coordinate of the center, is more than 4 or less than -4 then the radius of the circle, which is 4, won't be enough for curve to intersect with Y axis. So basically the question asks whether |a|>4: if it is, then the answer will be NO: the curve does not intersect with Y axis and if it's not, then the answer will be YES: the curve intersects with Y axis.

(1) a^2 + b^2 > 16 --> clearly insufficient as |a| may or may not be more than 4.

(2) a = |b| + 5 --> as the least value of absolute value (in our case |b|) is zero then the least value of a will be 5, so in any case |a|>4, which means that the circle does not intersect the Y axis. Sufficient.

Answer: B.



YOUR explanation is very detailed and appreciable.

consider stmnt 2.
take a case as
a=2 & b=3
or b=3 & a=2. both cond is in agreement with the statement 2.
so the eq will be (x-2/3)^2+(x-3/3)^2=16
this circle doesn't intersects the Y axis anywhere.

so the final ans will be E.
_________________

kudos me if you like my post.

Attitude determine everything.
all the best and God bless you.

Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 24045
Followers: 3731

Kudos [?]: 31170 [2] , given: 3270

Re: DS: Curve (m09q03) [#permalink] New post 22 Dec 2010, 04:58
2
This post received
KUDOS
Expert's post
321kumarsushant wrote:
YOUR explanation is very detailed and appreciable.

consider stmnt 2.
take a case as
a=2 & b=3
or b=3 & a=2. both cond is in agreement with the statement 2.
so the eq will be (x-2/3)^2+(x-3/3)^2=16
this circle doesn't intersects the Y axis anywhere.

so the final ans will be E.


First of all, OA (the final answer) for this question is B, not E.

Next, your examples (the red part) is not valid as if a=2 and b=3 then 2\neq{|3|+5=8} or if a=3 and b=2 then 3\neq{|2|+5=7} so these values of a and b do not satisfy statement (2).

Moreover, if a=2 and b=3 then circle with equation (x - a)^2 + (y - b)^2 = 16 does intersect Y-axis (so your conclusion is also wrong, because the formula you wrote is wrong).

Again the circle given by (x-a)^2+(y-b)^2=r^2 has center at point (a, b) and radius r, so if a=2 and b=3 then circle given by (x - 2)^2 + (y - 3)^2 = 16 has its center at (2,3) and has a radius of 4 and it intersects Y axis at points (0, \ 3-2\sqrt{3}) and (0, \ 3+2\sqrt{3}). You can see it on the below diagram:
Attachment:
MSP30219de6acg5dc779ic0000351eaf739i21c8f1.gif
MSP30219de6acg5dc779ic0000351eaf739i21c8f1.gif [ 3.04 KiB | Viewed 8862 times ]

Hope it helps.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Take a Survey about GMAT Prep - Win Prizes!

Manager
Manager
User avatar
Joined: 01 Nov 2010
Posts: 198
Location: India
Concentration: Technology, Marketing
GMAT Date: 08-27-2012
GPA: 3.8
WE: Marketing (Manufacturing)
Followers: 6

Kudos [?]: 22 [0], given: 38

Re: DS: Curve (m09q03) [#permalink] New post 22 Dec 2010, 09:47
thanks buddy...
i was a bit confused, but it got over .
thank you.
_________________

kudos me if you like my post.

Attitude determine everything.
all the best and God bless you.

Manager
Manager
User avatar
Affiliations: The Earth organization, India
Joined: 25 Dec 2010
Posts: 194
WE 1: SAP consultant-IT 2 years
WE 2: Entrepreneur-family business 2 years
Followers: 5

Kudos [?]: 10 [0], given: 12

Re: DS: Curve (m09q03) [#permalink] New post 09 Jun 2011, 21:58
Bunuel, I donno if u r still on these forums, but I need help with this :

" so in any case Image, which means that the circle does not intersect the Y axis."

I understood everything else except this statement.
_________________

Cheers !!

Quant 47-Striving for 50
Verbal 34-Striving for 40

1 KUDOS received
Math Forum Moderator
avatar
Joined: 20 Dec 2010
Posts: 2037
Followers: 128

Kudos [?]: 984 [1] , given: 376

Re: DS: Curve (m09q03) [#permalink] New post 10 Jun 2011, 00:45
1
This post received
KUDOS
bblast wrote:
Bunuel, I donno if u r still on these forums, but I need help with this :

" so in any case Image, which means that the circle does not intersect the Y axis."

I understood everything else except this statement.


|a|>4 i.e either a>4 OR a<-4.
If a, the x coordinate of the center of the circle, is more than 4 units away from the y-axis, the circumference of the circle will NEVER intersect the y-axis because the radius of the circle is 4 units. Thus, if we know that a is indeed >4 or <-4, we will definitely know that the circle doesn't intersect y-axis.
_________________

~fluke

Take a Survey about GMAT Prep - Win Prizes!

Manager
Manager
User avatar
Affiliations: The Earth organization, India
Joined: 25 Dec 2010
Posts: 194
WE 1: SAP consultant-IT 2 years
WE 2: Entrepreneur-family business 2 years
Followers: 5

Kudos [?]: 10 [0], given: 12

Re: DS: Curve (m09q03) [#permalink] New post 10 Jun 2011, 10:31
+1 fluke

my brains' light finally flickered after ur comment. got it now. :-D
_________________

Cheers !!

Quant 47-Striving for 50
Verbal 34-Striving for 40

Re: DS: Curve (m09q03)   [#permalink] 10 Jun 2011, 10:31
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic Grading curve heintzst 3 11 Jun 2012, 22:15
44 Experts publish their posts in the topic DS: Curve (m09q03) bigfernhead 35 07 Jan 2009, 15:45
2 Curves study 2 24 Dec 2008, 03:31
Ahead of the Curve agold 2 22 Aug 2008, 20:02
1 Curve Question bz9 13 22 Feb 2007, 20:48
Display posts from previous: Sort by

DS: Curve (m09q03)

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2    Next  [ 36 posts ] 

Moderators: WoundedTiger, Bunuel



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.