Find all School-related info fast with the new School-Specific MBA Forum

It is currently 29 Jul 2014, 06:56

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

E is a collection of four ODD integers and the greatest

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
1 KUDOS received
Director
Director
avatar
Status: Impossible is not a fact. It's an opinion. It's a dare. Impossible is nothing.
Affiliations: Chicago Booth Class of 2015
Joined: 26 Nov 2009
Posts: 995
Followers: 13

Kudos [?]: 377 [1] , given: 36

GMAT Tests User
E is a collection of four ODD integers and the greatest [#permalink] New post 25 Aug 2010, 06:41
1
This post received
KUDOS
7
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

41% (02:11) correct 59% (07:43) wrong based on 152 sessions
E is a collection of four ODD integers and the greatest difference between any two integers in E is 4. The standard deviation of E must be one of how many numbers?

(A) 3
(B) 4
(C) 5
(D) 6
(E) 7
[Reveal] Spoiler: OA

_________________

Please press kudos if you like my post.

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18806
Followers: 3262

Kudos [?]: 22691 [1] , given: 2635

Re: Hard - standard deviation [#permalink] New post 25 Aug 2010, 07:43
1
This post received
KUDOS
Expert's post
1
This post was
BOOKMARKED
I know this question, I've posted it in my topic: ps-questions-about-standard-deviation-85897.html

But there is a typo, it should be:

E is a collection of four ODD integers and the greatest difference between any two integers in E is 4. The standard deviation of E must be one of how many numbers?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

Let the smallest odd integer be 1, thus the largest one will be 5. We can have following 6 types of sets:

1. {1, 1, 1, 5} --> mean=2 --> |mean-x|=(1, 1, 1, 3);
2. {1, 1, 3, 5} --> mean=2.5 --> |mean-x|=(1.5, 1.5, 0.5, 2.5);
3. {1, 1, 5, 5} --> mean=3 --> |mean-x|=(2, 2, 2, 2);
4. {1, 3, 3, 5} --> mean=3 --> |mean-x|=(2, 0, 0, 2);
5. {1, 3, 5, 5} --> mean=3.5 --> |mean-x|=(2.5, 0.5, 1.5, 1.5);
6. {1, 5, 5, 5} --> mean=4 --> |mean-x|=(3, 1, 1, 1).

CALCULATING STANDARD DEVIATION OF A SET {x1, x2, ... xn}:
1. Find the mean, m, of the values.
2. For each value x_i calculate its deviation (m-x_i) from the mean.
3. Calculate the squares of these deviations.
4. Find the mean of the squared deviations. This quantity is the variance.
5. Take the square root of the variance. The quantity is th SD.

Expressed by formula: standard \ deviation= \sqrt{variance} = \sqrt{\frac{\sum(m-x_i)^2}{N}}.

You can see that deviation from the mean for 2 pairs of the set is the same, which means that SD of 1 and 6 will be the same and SD of 2 and 5 also will be the same. So SD of such set can take only 4 values.

Answer: B.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
User avatar
Joined: 05 Jul 2010
Posts: 3
Followers: 0

Kudos [?]: 0 [0], given: 16

Re: Hard - standard deviation [#permalink] New post 01 Oct 2010, 00:10
hello.
i would very appreciate if you can tell why in the end it became 4 instead of 3

"So SD of such set can take only 4 values."
thanks in advance
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18806
Followers: 3262

Kudos [?]: 22691 [0], given: 2635

Re: Hard - standard deviation [#permalink] New post 01 Oct 2010, 00:25
Expert's post
anishok wrote:
hello.
i would very appreciate if you can tell why in the end it became 4 instead of 3

"So SD of such set can take only 4 values."
thanks in advance


Sets with distinct SD:
1. {1, 1, 1, 5};
2. {1, 1, 3, 5};
3. {1, 1, 5, 5};
4. {1, 3, 3, 5};


So 4 different values of SD.

5. SD of {1, 3, 5, 5} equals to SD of 2. {1, 1, 3, 5};
6. SD of {1, 5, 5, 5} equals to SD of 1. {1, 1, 1, 5}.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

CEO
CEO
User avatar
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2793
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 176

Kudos [?]: 896 [0], given: 235

GMAT Tests User Reviews Badge
Re: Hard - standard deviation [#permalink] New post 01 Oct 2010, 00:53
Very good but time consuming question.

Bunuel do you think it is a Gmat Question.?
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned :)

Jo Bole So Nihaal , Sat Shri Akaal

:thanks Support GMAT Club by putting a GMAT Club badge on your blog/Facebook :thanks

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Gmat test review :
670-to-710-a-long-journey-without-destination-still-happy-141642.html

Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 807
Location: London
Followers: 77

Kudos [?]: 449 [0], given: 25

GMAT ToolKit User GMAT Tests User Reviews Badge
Re: Hard - standard deviation [#permalink] New post 01 Oct 2010, 06:20
gurpreetsingh wrote:
Very good but time consuming question.

Bunuel do you think it is a Gmat Question.?


I dont think this is a hard question, expecially if it only asks for odd integers. You do not need to plug in any values and certainly no calculations needed. All you need is a fundamental understanding of what standard deviation means. It is a measure of variation in the set or the distribution of numbers. So without loss of generality if you know the range you can easily enumerate the numbers. Let the 5 dashes below represent the range within which our four integers lie and I will use x's to denote the place of each constituent of the set :

- - - - -

Now, I know the range is 4, so there must be an "x" at the beginning and at the end :

x - - - x

I also know all numbers are odd so the other two numbers can only lie on either the first middle or last place giving me the arrangements :

xx - - - xx
x - xx - x
xx - x - x
xxx - - - x

Note that since standard deviation is a second order measure which measures the distribution of numbers it will be exactly the same for the sets "xx - x - x" and "x - x - xx". So we don't need to enumerate symmetric cases

Answer is 4
_________________

Math write-ups
1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18806
Followers: 3262

Kudos [?]: 22691 [1] , given: 2635

Re: Hard - standard deviation [#permalink] New post 01 Oct 2010, 06:49
1
This post received
KUDOS
Expert's post
shrouded1 wrote:
gurpreetsingh wrote:
Very good but time consuming question.

Bunuel do you think it is a Gmat Question.?


I dont think this is a hard question, expecially if it only asks for odd integers. You do not need to plug in any values and certainly no calculations needed. All you need is a fundamental understanding of what standard deviation means. It is a measure of variation in the set or the distribution of numbers. So without loss of generality if you know the range you can easily enumerate the numbers. Let the 5 dashes below represent the range within which our four integers lie and I will use x's to denote the place of each constituent of the set :

- - - - -

Now, I know the range is 4, so there must be an "x" at the beginning and at the end :

x - - - x

I also know all numbers are odd so the other two numbers can only lie on either the first middle or last place giving me the arrangements :

xx - - - xx
x - xx - x
xx - x - x
xxx - - - x

Note that since standard deviation is a second order measure which measures the distribution of numbers it will be exactly the same for the sets "xx - x - x" and "x - x - xx". So we don't need to enumerate symmetric cases

Answer is 4


I'd like to clear something for the people who are preparing for GMAT: this might not be a hard question for professional statistician but if such question ever appear on GMAT it'll be considered 750+, so very hard.

Usually GMAT SD questions are fairly straightforward and don't require actual calculation of SD, they are about the general understanding of the concept.

So don't be scared: it's really unlikely you'll see such a question on GMAT and if you will, then you must know that you are doing very well and are probably very close to 51 on quant.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

CEO
CEO
User avatar
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2793
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Followers: 176

Kudos [?]: 896 [0], given: 235

GMAT Tests User Reviews Badge
Re: Hard - standard deviation [#permalink] New post 01 Oct 2010, 07:45
1 KUDOS received
Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 807
Location: London
Followers: 77

Kudos [?]: 449 [1] , given: 25

GMAT ToolKit User GMAT Tests User Reviews Badge
Re: Hard - standard deviation [#permalink] New post 01 Oct 2010, 08:47
1
This post received
KUDOS
gurpreetsingh wrote:
Shrouded, could you elaborate it more.


All you need is a fundamental understanding of standard deviation to solve this question, plugging in values is painful and not required. Standard deviation measures how the elements of a set are distributed around the mean, or the "deviation" of the elements in other words. If you have just 4 elements in which the first and last are fixed relative to each other it just boils down to how you can distribute the other two to form different amounts of deviation.

The actual enumeration of this is shown above, but all you you need to note is that the deviation is symmetric cases is just the same :

{1,1,3,5}
{1,3,5,5}
OR
xx - x - x
x - x - xx

The deviation is exactly the same, its just the mean which is shifted.

Keeping this in mind there are only 4 possibilities with 4 odd numbers of range 4.
_________________

Math write-ups
1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
User avatar
Joined: 13 Jul 2010
Posts: 169
Followers: 1

Kudos [?]: 15 [0], given: 7

oddy integer SD [#permalink] New post 09 Nov 2010, 16:08
J is a collection of four odd integers whose range is 4. The standard deviation of J must be one of how many numbers?

a 3
b 4
c 5
d 6
e 7

Please explain your thought process on this one. Thanks
Manager
Manager
avatar
Joined: 30 Sep 2010
Posts: 59
Followers: 1

Kudos [?]: 26 [0], given: 0

Re: oddy integer SD [#permalink] New post 09 Nov 2010, 16:22
as range is 4..we know there is a lowest and there is a highest number
Now for the rest 2 numbers:

1) either they are equal to lowest number ... >> 1 SD
2) either they are equal to highest number... >> 1 SD
3) either one is equal to lowest number and one is equal to highest number... >> 1 SD
4) they are same but not equal to lowest or highest number... >> 1 SD

So 4 possibilities
(please note that all the numbers can not be distinct..otherwise range will be greater than 4)
Expert Post
4 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4593
Location: Pune, India
Followers: 1035

Kudos [?]: 4526 [4] , given: 162

Re: oddy integer SD [#permalink] New post 09 Nov 2010, 18:06
4
This post received
KUDOS
Expert's post
gettinit wrote:
J is a collection of four odd integers whose range is 4. The standard deviation of J must be one of how many numbers?

a 3
b 4
c 5
d 6
e 7

Please explain your thought process on this one. Thanks


This is a good question though I did not like the wording very much. Instead of 'SD of J must be one one how many numbers', 'How many distinct values can SD of J take' is better. Anyway,

First I thought J is a set of four odd integers with range 4 so I said J = {1, x, y, 5}
Now x and y can take 3 different values: 1, 3 or 5
Either both x and y are same. This can be done in 3 ways.
Or x and y are different. This can be done in 3C2 ways = 3 ways
Total x and y can take values in 3 + 3 = 6 ways
Let me enumerate them for clarification:
{1, 1, 1, 5}, {1, 3, 3, 5}, {1, 5, 5, 5}, {1, 1, 3, 5}, {1, 1, 5, 5}, {1, 3, 5, 5}
These are the 6 ways in which you can choose the numbers.
Important thing: SD of {1, 1, 1, 5} and {1, 5, 5, 5} is same. Why?
SD measures distance from mean. It has nothing to do with the actual value of mean and actual value of numbers.
In {1, 1, 1, 5}, mean is 2. Three of the numbers are distance 1 away from mean and one number is distance 3 away from mean.
In {1, 5, 5, 5}, mean is 4. Three of the numbers are distance 1 away from mean and one number is distance 3 away from mean.

Similarly, {1, 1, 3, 5} and {1, 3, 5, 5} will have the same SD.

Then, {1, 3, 3, 5} will have a distinct SD and {1, 1, 5, 5} will have a distinct SD.
In all, there are 4 different values that SD can take in such a case.

Note: It doesn't matter what the actual numbers are. SD of 1, 3, 5, 7 is the same as SD of 12, 14, 16, 18. For detailed explanation of SD and how to calculate it, check the theory or Stats.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Manager
Manager
User avatar
Joined: 13 Jul 2010
Posts: 169
Followers: 1

Kudos [?]: 15 [0], given: 7

Re: oddy integer SD [#permalink] New post 15 Nov 2010, 10:41
VeritasPrepKarishma wrote:
gettinit wrote:
J is a collection of four odd integers whose range is 4. The standard deviation of J must be one of how many numbers?

a 3
b 4
c 5
d 6
e 7

Please explain your thought process on this one. Thanks


This is a good question though I did not like the wording very much. Instead of 'SD of J must be one one how many numbers', 'How many distinct values can SD of J take' is better. Anyway,

First I thought J is a set of four odd integers with range 4 so I said J = {1, x, y, 5}
Now x and y can take 3 different values: 1, 3 or 5
Either both x and y are same. This can be done in 3 ways.
Or x and y are different. This can be done in 3C2 ways = 3 ways
Total x and y can take values in 3 + 3 = 6 ways
Let me enumerate them for clarification:
{1, 1, 1, 5}, {1, 3, 3, 5}, {1, 5, 5, 5}, {1, 1, 3, 5}, {1, 1, 5, 5}, {1, 3, 5, 5}
These are the 6 ways in which you can choose the numbers.
Important thing: SD of {1, 1, 1, 5} and {1, 5, 5, 5} is same. Why?
SD measures distance from mean. It has nothing to do with the actual value of mean and actual value of numbers.
In {1, 1, 1, 5}, mean is 2. Three of the numbers are distance 1 away from mean and one number is distance 3 away from mean.
In {1, 5, 5, 5}, mean is 4. Three of the numbers are distance 1 away from mean and one number is distance 3 away from mean.

Similarly, {1, 1, 3, 5} and {1, 3, 5, 5} will have the same SD.

Then, {1, 3, 3, 5} will have a distinct SD and {1, 1, 5, 5} will have a distinct SD.
In all, there are 4 different values that SD can take in such a case.

Note: It doesn't matter what the actual numbers are. SD of 1, 3, 5, 7 is the same as SD of 12, 14, 16, 18. For detailed explanation of SD and how to calculate it, check the theory or Stats.


Thanks for the great explanations karishma, shrouded, and bunuel as always :)
Manager
Manager
avatar
Joined: 14 Nov 2011
Posts: 147
Location: United States
Concentration: General Management, Entrepreneurship
Schools: Stanford '15
GPA: 3.61
WE: Consulting (Manufacturing)
Followers: 0

Kudos [?]: 17 [0], given: 97

GMAT ToolKit User
Re: Hard - standard deviation [#permalink] New post 24 May 2013, 17:42
Bunuel wrote:
I know this question, I've posted it in my topic: ps-questions-about-standard-deviation-85897.html

But there is a typo, it should be:

E is a collection of four ODD integers and the greatest difference between any two integers in E is 4. The standard deviation of E must be one of how many numbers?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

Let the smallest odd integer be 1, thus the largest one will be 5. We can have following 6 types of sets:

1. {1, 1, 1, 5} --> mean=2 --> |mean-x|=(1, 1, 1, 3);
2. {1, 1, 3, 5} --> mean=2.5 --> |mean-x|=(1.5, 1.5, 0.5, 2.5);
3. {1, 1, 5, 5} --> mean=3 --> |mean-x|=(2, 2, 2, 2);
4. {1, 3, 3, 5} --> mean=3 --> |mean-x|=(2, 0, 0, 2);
5. {1, 3, 5, 5} --> mean=3.5 --> |mean-x|=(2.5, 0.5, 1.5, 1.5);
6. {1, 5, 5, 5} --> mean=4 --> |mean-x|=(3, 1, 1, 1).

CALCULATING STANDARD DEVIATION OF A SET {x1, x2, ... xn}:
1. Find the mean, m, of the values.
2. For each value x_i calculate its deviation (m-x_i) from the mean.
3. Calculate the squares of these deviations.
4. Find the mean of the squared deviations. This quantity is the variance.
5. Take the square root of the variance. The quantity is th SD.

Expressed by formula: standard \ deviation= \sqrt{variance} = \sqrt{\frac{\sum(m-x_i)^2}{N}}.

You can see that deviation from the mean for 2 pairs of the set is the same, which means that SD of 1 and 6 will be the same and SD of 2 and 5 also will be the same. So SD of such set can take only 4 values.

Answer: B.

Hope it's clear.



Hi, in the sets above why aren't sets [3,5,5,5] and [3,3,3,5] considered? Their is no limit on minimum range.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18806
Followers: 3262

Kudos [?]: 22691 [0], given: 2635

Re: Hard - standard deviation [#permalink] New post 25 May 2013, 02:24
Expert's post
cumulonimbus wrote:
Bunuel wrote:
I know this question, I've posted it in my topic: ps-questions-about-standard-deviation-85897.html

But there is a typo, it should be:

E is a collection of four ODD integers and the greatest difference between any two integers in E is 4. The standard deviation of E must be one of how many numbers?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

Let the smallest odd integer be 1, thus the largest one will be 5. We can have following 6 types of sets:

1. {1, 1, 1, 5} --> mean=2 --> |mean-x|=(1, 1, 1, 3);
2. {1, 1, 3, 5} --> mean=2.5 --> |mean-x|=(1.5, 1.5, 0.5, 2.5);
3. {1, 1, 5, 5} --> mean=3 --> |mean-x|=(2, 2, 2, 2);
4. {1, 3, 3, 5} --> mean=3 --> |mean-x|=(2, 0, 0, 2);
5. {1, 3, 5, 5} --> mean=3.5 --> |mean-x|=(2.5, 0.5, 1.5, 1.5);
6. {1, 5, 5, 5} --> mean=4 --> |mean-x|=(3, 1, 1, 1).

CALCULATING STANDARD DEVIATION OF A SET {x1, x2, ... xn}:
1. Find the mean, m, of the values.
2. For each value x_i calculate its deviation (m-x_i) from the mean.
3. Calculate the squares of these deviations.
4. Find the mean of the squared deviations. This quantity is the variance.
5. Take the square root of the variance. The quantity is th SD.

Expressed by formula: standard \ deviation= \sqrt{variance} = \sqrt{\frac{\sum(m-x_i)^2}{N}}.

You can see that deviation from the mean for 2 pairs of the set is the same, which means that SD of 1 and 6 will be the same and SD of 2 and 5 also will be the same. So SD of such set can take only 4 values.

Answer: B.

Hope it's clear.



Hi, in the sets above why aren't sets [3,5,5,5] and [3,3,3,5] considered? Their is no limit on minimum range.


This cases are not possible since "the greatest difference between any two integers in E is 4" means that the range of the set is 4.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
avatar
Joined: 07 Apr 2012
Posts: 307
Followers: 0

Kudos [?]: 14 [0], given: 45

Re: Hard - standard deviation [#permalink] New post 22 Sep 2013, 10:31
Bunuel wrote:
cumulonimbus wrote:
Bunuel wrote:
I know this question, I've posted it in my topic: ps-questions-about-standard-deviation-85897.html

But there is a typo, it should be:

E is a collection of four ODD integers and the greatest difference between any two integers in E is 4. The standard deviation of E must be one of how many numbers?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

Let the smallest odd integer be 1, thus the largest one will be 5. We can have following 6 types of sets:

1. {1, 1, 1, 5} --> mean=2 --> |mean-x|=(1, 1, 1, 3);
2. {1, 1, 3, 5} --> mean=2.5 --> |mean-x|=(1.5, 1.5, 0.5, 2.5);
3. {1, 1, 5, 5} --> mean=3 --> |mean-x|=(2, 2, 2, 2);
4. {1, 3, 3, 5} --> mean=3 --> |mean-x|=(2, 0, 0, 2);
5. {1, 3, 5, 5} --> mean=3.5 --> |mean-x|=(2.5, 0.5, 1.5, 1.5);
6. {1, 5, 5, 5} --> mean=4 --> |mean-x|=(3, 1, 1, 1).

CALCULATING STANDARD DEVIATION OF A SET {x1, x2, ... xn}:
1. Find the mean, m, of the values.
2. For each value x_i calculate its deviation (m-x_i) from the mean.
3. Calculate the squares of these deviations.
4. Find the mean of the squared deviations. This quantity is the variance.
5. Take the square root of the variance. The quantity is th SD.

Expressed by formula: standard \ deviation= \sqrt{variance} = \sqrt{\frac{\sum(m-x_i)^2}{N}}.

You can see that deviation from the mean for 2 pairs of the set is the same, which means that SD of 1 and 6 will be the same and SD of 2 and 5 also will be the same. So SD of such set can take only 4 values.

Answer: B.

Hope it's clear.



Hi, in the sets above why aren't sets [3,5,5,5] and [3,3,3,5] considered? Their is no limit on minimum range.


This cases are not possible since "the greatest difference between any two integers in E is 4" means that the range of the set is 4.



I have seen that in all previous posts, consideration of sets that are all the same number such as [1,1,1,1] were not considered.
Why is that?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18806
Followers: 3262

Kudos [?]: 22691 [0], given: 2635

Re: Hard - standard deviation [#permalink] New post 22 Sep 2013, 23:58
Expert's post
ronr34 wrote:
Bunuel wrote:
cumulonimbus wrote:

Hi, in the sets above why aren't sets [3,5,5,5] and [3,3,3,5] considered? Their is no limit on minimum range.


This cases are not possible since "the greatest difference between any two integers in E is 4" means that the range of the set is 4.



I have seen that in all previous posts, consideration of sets that are all the same number such as [1,1,1,1] were not considered.
Why is that?


The greatest difference between any two integers in E is 4 means that the range of the set is 4 and the range of {1, 1, 1, 1} is 0, not 4.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
avatar
Joined: 07 Apr 2012
Posts: 307
Followers: 0

Kudos [?]: 14 [0], given: 45

Re: Hard - standard deviation [#permalink] New post 30 Oct 2013, 13:38
Bunuel wrote:

The greatest difference between any two integers in E is 4 means that the range of the set is 4 and the range of {1, 1, 1, 1} is 0, not 4.


Thanks!

I now see it on the post above... must have missed it
Intern
Intern
avatar
Joined: 21 Jun 2014
Posts: 3
Followers: 0

Kudos [?]: 0 [0], given: 2

Re: E is a collection of four ODD integers and the greatest [#permalink] New post 21 Jul 2014, 02:29
Hi

Isn't a set with values 3,3,5, 7 viable??
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 18806
Followers: 3262

Kudos [?]: 22691 [0], given: 2635

Re: E is a collection of four ODD integers and the greatest [#permalink] New post 21 Jul 2014, 02:36
Expert's post
HarvinderSaini wrote:
Hi

Isn't a set with values 3,3,5, 7 viable??


Yes, it is.

The sets in my post are based on an assumption that the smallest integer is 1 to simplify finding a pattern. Your set is similar to {1, 1, 3, 5} in my solution.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Re: E is a collection of four ODD integers and the greatest   [#permalink] 21 Jul 2014, 02:36
    Similar topics Author Replies Last post
Similar
Topics:
Experts publish their posts in the topic If a, b, c, d, and e are distinct odd integers, which of the macjas 1 27 May 2012, 08:58
1 What is the greatest number of four-digit integers whose dancinggeometry 5 15 Sep 2008, 03:15
If a, b, c, d, and e are distinct odd integers, which of the tarek99 2 28 Nov 2007, 07:15
What is the sum of four consecutive odd integers? 1. Product bmwhype2 4 13 Nov 2007, 05:51
J is a collection of four odd integers and the greatest kevincan 13 30 Aug 2006, 02:28
Display posts from previous: Sort by

E is a collection of four ODD integers and the greatest

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.