Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: Each digit in the two-digit number G is halved to form a new [#permalink]
05 Sep 2013, 22:51

Expert's post

ygdrasil24 wrote:

Bunuel wrote:

u2lover wrote:

Each digit in the two-digit number G is halved to form a new two-digit number H. Which of the following could be the sum of G and H?

A. 153 B. 150 C. 137 D. 129 E. 89

Two-step solution:

G + G/2 = 3G/2 --> the sum is a multiple of 3.

G is a two-digit number --> G < 100 --> 3G/2 < 150.

Among the answer choices the only multiple of 3 which is less than 150 is 129.

Answer: D.

What could be the minimum number ?

Assuming G is a positive number, the least value of G+G/2 will be 20+10=30. G must be even and cannot be less that 20. If it's an even number less than 20, then G/2 will not be a two-digit number.

Re: Each digit in the two-digit number G is halved to form a new [#permalink]
05 Sep 2013, 23:08

What could be the minimum number ?[/quote]

Assuming G is a positive number, the least value of G+G/2 will be 20+10=30. G must be even and cannot be less that 20. If it's an even number less than 20, then G/2 will not be a two-digit number.

Re: Each digit in the two-digit number G is halved to form a new [#permalink]
21 Nov 2013, 05:08

Let G be XX. Let H be x/2 x/2. G+H= 3 () Its a multiple of 3. Only two numbers fit the bill 153 and 129. 153/3 = 51 ( not possible because G is a two digit number and 51 is half of 102). Hence (D) 129.

Re: Each digit in the two-digit number G is halved to form a new [#permalink]
04 Mar 2014, 16:14

Let H be the 2-digit number xy (actually 10x+y). Then G must be 2x2y (actually 10(2x) + 2y or 2(10x+y). In other words, the digits of G must be even single-digit numbers. The maximum value of G can be 88 and thereby H can be 44. Therefore, maximum value of G+H = 132. Therefore, A & B are out. Now G+H = 3(10x+y) implies, G+H must be a multiple of 3. Only D among the remaining answer choices is a multiple of 3. So D is the answer.

Re: Each digit in the two-digit number G is halved to form a new [#permalink]
04 Mar 2014, 18:48

prsnt11 wrote:

Let H be the 2-digit number xy (actually 10x+y). Then G must be 2x2y (actually 10(2x) + 2y or 2(10x+y). In other words, the digits of G must be even single-digit numbers. The maximum value of G can be 88 and thereby H can be 44. Therefore, maximum value of G+H = 132. Therefore, A & B are out. Now G+H = 3(10x+y) implies, G+H must be a multiple of 3. Only D among the remaining answer choices is a multiple of 3. So D is the answer.

C is also eliminated _________________

Kindly press "+1 Kudos" to appreciate

gmatclubot

Re: Each digit in the two-digit number G is halved to form a new
[#permalink]
04 Mar 2014, 18:48