Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Each • in the mileage table above represents an entry indica [#permalink]
02 Jun 2010, 09:32

9

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

45% (medium)

Question Stats:

66% (02:19) correct
34% (01:50) wrong based on 385 sessions

Attachment:

Table.png [ 23.23 KiB | Viewed 6201 times ]

Each • in the mileage table above represents an entry indicating the distance between a pair of the five cities. If the table were extended to represent the distances between all pairs of 30 cities and each distance were to be represented by only one entry, how many entries would the table then have?

Re: PS Q: OG-12 #116 [#permalink]
02 Jun 2010, 10:42

8

This post received KUDOS

snkrhed wrote:

So there's a chart that looks a lot like this:

-E D C B A A * * * * B * * * C * * D * E

Each * in the mileage table above represents an entry indicating the distance between all pairs of 30 cities and each distance were to be represented by only one entry, how many entries would the table then have?

(A) 60 (B) 435 (C) 450 (D) 465 (E) 900

City B, the second city has 1 point City C the third city has 2 points City D, the fourth city has 3 points

What's the pattern?

Number of cities minus 1 so the 30th city is going to have 29 points

Then it becomes a matter of adding the consecutive integers from 1 to 29 The sum is the average * number of terms average = 15 number of terms = 29 29*15 = 435

Re: PS Q: OG-12 #116 [#permalink]
02 Jun 2010, 10:54

4

This post received KUDOS

Expert's post

3

This post was BOOKMARKED

snkrhed wrote:

Attachment:

img.jpg

Each dot in the mileage table above represents an entry indicating the distance between a pair of the five cities. If the table were extended to represent the distances of 30 cities and each distance were to be represented by only one entry, how many entries would the table then have?

(A) 60 (B) 435 (C) 450 (D) 465 (E) 900

We are there told that there should be one entry for each pair. How many entries would the table then have? Or how many different pairs can 30 cities give?

Re: PS Q: OG-12 #116 [#permalink]
03 Jan 2013, 11:54

Bunuel wrote:

snkrhed wrote:

Attachment:

img.jpg

Each dot in the mileage table above represents an entry indicating the distance between a pair of the five cities. If the table were extended to represent the distances of 30 cities and each distance were to be represented by only one entry, how many entries would the table then have?

(A) 60 (B) 435 (C) 450 (D) 465 (E) 900

We are there told that there should be one entry for each pair. How many entries would the table then have? Or how many different pairs can 30 cities give?

Re: Each • in the mileage table above represents an entry indica [#permalink]
10 Nov 2013, 22:42

How would this question be solved using a consecutive integer format? Can you find the average on the consecutive integers and then multiply by the number of terms? I ask because this question is listed as a consecutive integer question in the MGAMT quant guide.

Re: Each • in the mileage table above represents an entry indica [#permalink]
16 Feb 2014, 01:47

stevennu wrote:

How would this question be solved using a consecutive integer format? Can you find the average on the consecutive integers and then multiply by the number of terms? I ask because this question is listed as a consecutive integer question in the MGAMT quant guide.

If second entry =1 third entry = 2 30th entry = 29 etc

Thus S(n)=n/2(2a+(n-1)d) where a=1, d=1, n=29 plug in and you get the answer. _________________

Either suffer the pain of discipline, or suffer the pain of regret.

If my posts are helping you show some love awarding a kudos

Each dot in the mileage table above represents an entry indicating the distance between a pair of the five cities. If the table were extended to represent the distances of 30 cities and each distance were to be represented by only one entry, how many entries would the table then have?

(A) 60 (B) 435 (C) 450 (D) 465 (E) 900

We are there told that there should be one entry for each pair. How many entries would the table then have? Or how many different pairs can 30 cities give?

C^2_{30}=435

Answer: B.

Hi Bunuel,

Can you please elaborate on how this formula works?

Thanks!

EDIT: I did it via the table method but i've seen your formula pop up quite often and I'm failing miserably at it. That might explain the horrible score in NP.

I understand what formula to use but i'm having a hard time connecting the formula to the problem "C^n_k = \frac{n!}{k!(n-k)!}"

Each dot in the mileage table above represents an entry indicating the distance between a pair of the five cities. If the table were extended to represent the distances of 30 cities and each distance were to be represented by only one entry, how many entries would the table then have?

(A) 60 (B) 435 (C) 450 (D) 465 (E) 900

We are there told that there should be one entry for each pair. How many entries would the table then have? Or how many different pairs can 30 cities give?

C^2_{30}=435

Answer: B.

Hi Bunuel,

Can you please elaborate on how this formula works?

Thanks!

EDIT: I did it via the table method but i've seen your formula pop up quite often and I'm failing miserably at it. That might explain the horrible score in NP.

I understand what formula to use but i'm having a hard time connecting the formula to the problem "C^n_k = \frac{n!}{k!(n-k)!}"

C^2_{30} is choosing 2 out of 30. There are 30 cities and each pair of cities need an entry, hence 30 cites need C^2_{30} entries.

Re: PS Q: OG-12 #116 [#permalink]
10 May 2014, 04:06

Expert's post

russ9 wrote:

Bunuel wrote:

C^2_30 is choosing 2 out of 30. There are 30 cities and each pair of cities need an entry, hence 30 cites need C^2_30 entries.

Hope it's clear.

Hi Bunuel,

Unfortunately, still not clear. Why are we choosing 2 out of 30?

Consider the table given in the original post:

A and B have 1 entry; A and C have 1 entry; A and D have 1 entry; A and E have 1 entry; B and C have 1 entry; B and D have 1 entry; B and E have 1 entry; C and D have 1 entry; C and E have 1 entry; D and E have 1 entry.

So, each pair of letters from {A, B, C, D, E} has 1 entry, total of 10 entries. How many pairs can we have? C^2_5=10.

Re: PS Q: OG-12 #116 [#permalink]
15 May 2014, 15:02

Bunuel wrote:

russ9 wrote:

Bunuel wrote:

C^2_30 is choosing 2 out of 30. There are 30 cities and each pair of cities need an entry, hence 30 cites need C^2_30 entries.

Hope it's clear.

Hi Bunuel,

Unfortunately, still not clear. Why are we choosing 2 out of 30?

Consider the table given in the original post:

A and B have 1 entry; A and C have 1 entry; A and D have 1 entry; A and E have 1 entry; B and C have 1 entry; B and D have 1 entry; B and E have 1 entry; C and D have 1 entry; C and E have 1 entry; D and E have 1 entry.

So, each pair of letters from {A, B, C, D, E} has 1 entry, total of 10 entries. How many pairs can we have? C^2_5=10.

Re: Each • in the mileage table above represents an entry indica [#permalink]
13 Oct 2014, 02:08

Combination formula is no doubt easiest and fastest. But other method is

Imagine it was an excel spreadsheet. Remove Cells A1, B2, C3, D4 etc, basically a diagonal across. Total will be 30 such cells. So now we have 900 - 30 = 870.

On both sides of the diagonal distance (between cities) is shown twice.

Therefore divide 870 into half.

Answer 435.

gmatclubot

Re: Each • in the mileage table above represents an entry indica
[#permalink]
13 Oct 2014, 02:08