Find all School-related info fast with the new School-Specific MBA Forum

It is currently 02 May 2016, 18:17
GMAT Club Tests

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Each member of a pack of 55 wolves has either brown or blue

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

3 KUDOS received
Current Student
User avatar
Joined: 23 Oct 2010
Posts: 386
Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Followers: 20

Kudos [?]: 258 [3] , given: 73

GMAT ToolKit User
Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 23 Oct 2011, 10:23
3
This post received
KUDOS
16
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

54% (03:16) correct 46% (02:29) wrong based on 450 sessions

HideShow timer Statictics

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.
[Reveal] Spoiler: OA

_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Expert Post
9 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 32558
Followers: 5642

Kudos [?]: 68455 [9] , given: 9805

Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 17 Mar 2012, 04:28
9
This post received
KUDOS
Expert's post
3
This post was
BOOKMARKED
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

Image

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Image

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.

[Reveal] Spoiler:
Attachment:
Wolves (1)+(2).png
Wolves (1)+(2).png [ 5.23 KiB | Viewed 6436 times ]

Attachment:
Wolves.png
Wolves.png [ 4.33 KiB | Viewed 6453 times ]

_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

3 KUDOS received
Manager
Manager
avatar
Joined: 18 Jun 2010
Posts: 148
Followers: 0

Kudos [?]: 30 [3] , given: 2

Re: 55 wolves [#permalink]

Show Tags

New post 23 Oct 2011, 11:39
3
This post received
KUDOS
1
This post was
BOOKMARKED
+1 for C.

With given information, you can construct the following grid:


White Grey Total

Brown 2x x 3x

Blue 3y 4y 7y

Total 55

So, 3x+7y=55

Now the above combinations are satisfied only for x=2 and y=7 or x=9 and y=4.

In both cases 7y > 3x, i.e. Blue eyed wolves are greater than brown eyed wolves.

Hope that helps.
Expert Post
1 KUDOS received
Math Revolution GMAT Instructor
User avatar
Joined: 16 Aug 2015
Posts: 1055
GPA: 3.82
Followers: 65

Kudos [?]: 449 [1] , given: 0

Premium Member
Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 14 Sep 2015, 03:49
1
This post received
KUDOS
Expert's post
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem.
Remember equal number of variables and independent equations ensures a solution.

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.

Transforming the original condition and the question, we have the below 2by2 question which is a typical question in GMAT test.

There are 4 variables (a,b,c,d), 2 equations (a+b+c+d=55, b>3) and we need 2 more equations to match the number of variables and equations. Since there is 1 each in 1) and 2), there is high probability that C is the answer, and it actually turns out that C is the answer.
Attachments

GC DS LalaB Each member of a pack of (20150913).png
GC DS LalaB Each member of a pack of (20150913).png [ 3.07 KiB | Viewed 1141 times ]


_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
Find a 10% off coupon code for GMAT Club members.
Unlimited Access to over 120 free video lessons - try it yourself
See our Youtube demo

Manager
Manager
avatar
Status: I will be back!
Joined: 13 Feb 2012
Posts: 69
Location: India
Followers: 0

Kudos [?]: 37 [0], given: 38

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 17 Mar 2012, 03:43
LalaB wrote:
Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there
are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed
wolves?
(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.


Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"
_________________

--shadab
Gmat FlashCard For Anki

Manager
Manager
avatar
Status: I will be back!
Joined: 13 Feb 2012
Posts: 69
Location: India
Followers: 0

Kudos [?]: 37 [0], given: 38

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 17 Mar 2012, 10:13
Bunuel wrote:
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:
Attachment:
Wolves.png
"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:
Attachment:
Wolves (1)+(2).png
Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


Thanks Bunnel, excellent explanation. +1 :)
_________________

--shadab
Gmat FlashCard For Anki

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 32558
Followers: 5642

Kudos [?]: 68455 [0], given: 9805

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 11 Jun 2013, 07:28
Expert's post
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

Theory on Overlapping Sets:
advanced-overlapping-sets-problems-144260.html
how-to-draw-a-venn-diagram-for-problems-98036.html

All DS Overlapping Sets Problems to practice: search.php?search_id=tag&tag_id=45
All PS Overlapping Sets Problems to practice: search.php?search_id=tag&tag_id=65

_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 15 Mar 2012
Posts: 71
Followers: 0

Kudos [?]: 5 [0], given: 20

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 21 Aug 2013, 03:46
Bunuel wrote:
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:
Attachment:
Wolves.png
"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:
Attachment:
Wolves (1)+(2).png
Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


There could be another solution to the equation:
y=11 and x=3 --> 3y+7x=33+21=55; and in this case, 7x < 3y => A & B together are insufficient => E is the answer
Am I missing something here?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 32558
Followers: 5642

Kudos [?]: 68455 [0], given: 9805

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 21 Aug 2013, 03:48
Expert's post
divineacclivity wrote:
Bunuel wrote:

Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:
Attachment:
Wolves.png
"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:
Attachment:
Wolves (1)+(2).png
Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


There could be another solution to the equation:
y=11 and x=3 --> 3y+7x=33+21=55; and in this case, 7x < 3y => A & B together are insufficient => E is the answer
Am I missing something here?


Arithmetic: 33+21=54 not 55.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
avatar
Status: On a mountain of skulls, in the castle of pain, I sit on a throne of blood.
Joined: 30 Jul 2013
Posts: 322
Followers: 7

Kudos [?]: 102 [0], given: 130

GMAT ToolKit User Reviews Badge CAT Tests
Each member of a pack of 55 wolves has either brown or blue eyes and e [#permalink]

Show Tags

New post 01 Sep 2014, 10:29
Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there
are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed
wolves?
(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 32558
Followers: 5642

Kudos [?]: 68455 [0], given: 9805

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 01 Sep 2014, 10:31
Expert's post
AmoyV wrote:
Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there
are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed
wolves?
(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.


Merging topics.

Please refer to the discussion above.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 14 Apr 2015
Posts: 18
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 12 Sep 2015, 09:50
Bunuel wrote:
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:
Attachment:
Wolves.png
"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:
Attachment:
Wolves (1)+(2).png
Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


Hello Bunel ,
why should i see x only as integer , why can't it be fraction with denominator as 7 eg:18/7 ?
Expert Post
Math Forum Moderator
avatar
Joined: 20 Mar 2014
Posts: 2605
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
Followers: 94

Kudos [?]: 1066 [0], given: 777

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 12 Sep 2015, 14:15
Expert's post
divya517 wrote:
Bunuel wrote:
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:
Attachment:
Wolves.png
"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:
Attachment:
Wolves (1)+(2).png
Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


Hello Bunel ,
why should i see x only as integer , why can't it be fraction with denominator as 7 eg:18/7 ?


Because if x = fraction , lets say =18/7, then 3x = NUMBER OF WOLVES with white coats = 54/7 = fraction . How can number of wolves be fraction? It does not make any sense to say we have 3/4 wolves or 22/7 wolves etc. Thus, x can only take integer values.
_________________

Thursday with Ron updated list as of July 1st, 2015: http://gmatclub.com/forum/consolidated-thursday-with-ron-list-for-all-the-sections-201006.html#p1544515
Rules for Posting in Quant Forums: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html
Writing Mathematical Formulae in your posts: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html#p1096628
GMATCLUB Math Book: http://gmatclub.com/forum/gmat-math-book-in-downloadable-pdf-format-130609.html
Everything Related to Inequalities: http://gmatclub.com/forum/inequalities-made-easy-206653.html#p1582891
Inequalities tips: http://gmatclub.com/forum/inequalities-tips-and-hints-175001.html
Debrief, 650 to 750: http://gmatclub.com/forum/650-to-750-a-10-month-journey-to-the-score-203190.html

Intern
Intern
avatar
Joined: 09 Oct 2015
Posts: 48
Followers: 0

Kudos [?]: 0 [0], given: 5

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 23 Oct 2015, 01:25
Bunuel wrote:
AmoyV wrote:
Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there
are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed
wolves?
(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1.


Merging topics.

Please refer to the discussion above.


If we do it by taking fractions, i.e. 3/7 X , 4/7 X , 2/3Y AND 1/3 Y, we do not get the same answer. Could you please advice?

3x/7>3 --> 3x>21--x>7
Intern
Intern
avatar
Joined: 09 Oct 2015
Posts: 48
Followers: 0

Kudos [?]: 0 [0], given: 5

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 23 Oct 2015, 01:34
Bunuel wrote:
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:
Attachment:
The attachment Wolves.png is no longer available
"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:
Attachment:
The attachment Wolves (1)+(2).png is no longer available
Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


with fractions i get E as the answer
Attachments

20151023013242.jpg
20151023013242.jpg [ 114.11 KiB | Viewed 881 times ]

Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 32558
Followers: 5642

Kudos [?]: 68455 [0], given: 9805

Re: Each member of a pack of 55 wolves has either brown or blue [#permalink]

Show Tags

New post 23 Oct 2015, 04:48
Expert's post
rahulkashyap wrote:
Bunuel wrote:
shadabkhaniet wrote:
Not able to understand the line " If there are more than 3 blue-eyed wolves with white coats"


Each member of a pack of 55 wolves has either brown or blue eyes and either a white or a grey coat. If there are more than 3 blue-eyed wolves with white coats, are there more blue-eyed wolves than brown-eyed wolves?

Look at the matrix below:

Image

"There are more than 3 blue-eyed wolves with white coats" means that # of wolves which have blue eyes AND white coats is more than 3. The question asks whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

(1) Among the blue-eyed wolves, the ratio of grey coats to white coats is 4 to 3. Not sufficient on its own.
(2) Among the brown-eyed wolves, the ratio of white coats to grey coats is 2 to 1. Not sufficient on its own.

(1)+(2) When taken together we get the flowing matrix:

Image

Notice that x and y must be integers (they represent some positive multiples for the ratios given in the statements).

So, we have that 3y+7x=55. After some trial and error we can find that this equation has only 3 positive integers solutions:
y=2 and x=7 --> 3y+7x=6+49=55;
y=9 and x=4 --> 3y+7x=27+28=55;
y=16 and x=1 --> 3y+7x=48+7=55;

Now, the third solution (x=1) is not valid, since in this case # of wolves which have blue eyes AND white coats becomes 3x=3, so not more than 3 as given in the stem. As for the first two cases, in both of them 7x is more than 3y (49>6 and 28>27), so we can answer definite YES, to the question whether there are more blue-eyed wolves (blue box) than brown-eyed wolves (brown box).

Answer: C.

Hope it's clear.


with fractions i get E as the answer
Image


Can you please give TWO examples which satisfy both statements and the stem?
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Re: Each member of a pack of 55 wolves has either brown or blue   [#permalink] 23 Oct 2015, 04:48
    Similar topics Author Replies Last post
Similar
Topics:
3 Experts publish their posts in the topic Each of the balls in a jar is either red, green or blue. If anon1 3 30 Nov 2012, 20:21
1 Experts publish their posts in the topic Each of the 25 balls in a certain box is either red, blue or hitmoss 3 15 May 2011, 10:31
10 Experts publish their posts in the topic Each of the 25 balls in a certain box is either red, blue, changhiskhan 4 26 Mar 2010, 15:14
4 Experts publish their posts in the topic Each of the 25 balls in a certain box is either red, blue above720 15 11 Dec 2008, 08:03
101 Experts publish their posts in the topic Each of the 25 balls in a certain box is either red, blue or lexis 30 01 May 2008, 11:01
Display posts from previous: Sort by

Each member of a pack of 55 wolves has either brown or blue

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.