Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

take the first and last digit,
on applying (a^2-b^2) formula we get
21(19)-21(17)+21(15)-21(13)+...............-21(1)
21(19-17+15-13+11-9+7-5+3-1)
21(2+2+2+2+2)
21(10)=210.

take the first and last digit, on applying (a^2-b^2) formula we get 21(19)-21(17)+21(15)-21(13)+...............-21(1) 21(19-17+15-13+11-9+7-5+3-1) 21(2+2+2+2+2) 21(10)=210.

I dont see how you've applied the (a^2-b^2) formula?

Re: Yet Another Sequence! [#permalink]
29 Jun 2009, 13:13

Thanks for reposting the question. I couldnt make sense of the symbol either. I am new to GMATClub and I must say that this group is more than just impressive. I appreciate the camaraderie the members show to help each other get their best, and hope to contribute whenever I can. In that spirit....

I got the (2-1)(2+1) + (4-3)(4+3) + (6-5)(6+5) + (8-7)(8+7) + ..... + (20-19)(20+19).... part But then this translates to 3 + 7 + 11 + 15 +...... + 39, which I solved as 10 terms with next term incremented by 4. So their sum would be the middle term (average of 19 and 23 = 21) multiplied by 10 = 210.

Using "Sum of n terms of an equally spaced series = middle terms * n" (if n = even, middle term is average of the two middle terms).

Re: Yet Another Sequence! [#permalink]
14 Apr 2010, 10:17

I believe this has already been said in other ways, but I got lost in some of the terminology and symbols, so I had to to break it down a little more for myself. Hopefully this helps anyone still confused by this.

This is a arithmetic sequence, but only if we look at it in pairs. So (-1^2 + 2^2) is the first pair. (-3^2 + 4^2) is the second pair and so on. The sum in each pair adds four to the previous pair each time as follows:

As soon as we recognize the sequence, we can use the sum of n terms arithmetic progression formula: Sum of n terms = (n/2) x (value of 1st term + value of last term) substitute: sum of n terms = (10/2) x (3+39) = 5 x 42 = 210

Note: we used 10 as the N # of terms because we turned the 20 original terms into 10 pairs.

For those concerned about speed, on this problem all that we have to do is calculate the first couple of pairs until we see the pattern, then calculate the last pair (-19^2 + 20^2), add it to the outcome of the first pair (-1^2 + 2^2) and multiply by 5. This can be done in way under 2 minutes.

Re: Yet Another Sequence! [#permalink]
09 Jul 2010, 20:26

if you didn't see that grouping you could always after doing a couple of numbers see that after every addition step which happens to coincide with even numbers there is an overall increase but the value never attains the value of the squared term added...

so you know that after adding 20^2 the answer will be less than 400

at this point, either guess or do a few terms and see that the negative value build up to higher than 70.....ie 400-330.....

gmatclubot

Re: Yet Another Sequence!
[#permalink]
09 Jul 2010, 20:26