Find all School-related info fast with the new School-Specific MBA Forum

It is currently 28 Jul 2014, 03:02

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Five pieces of wood have an average length of 124cm and a

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
CEO
CEO
User avatar
Joined: 29 Aug 2007
Posts: 2501
Followers: 51

Kudos [?]: 484 [0], given: 19

GMAT Tests User
Re: Five pieces of wood GMAT Prep PS [#permalink] New post 18 Mar 2009, 21:39
lav wrote:
@GMAT tiger can you pls explain more ,

why have you taken three nos to be 143 ?


this is the dist: a, a, 140, 140, 140. this way only "a's" value can be max.

so 2a + 140x3 = 124x5
a = 100.
_________________

Verbal: new-to-the-verbal-forum-please-read-this-first-77546.html
Math: new-to-the-math-forum-please-read-this-first-77764.html
Gmat: everything-you-need-to-prepare-for-the-gmat-revised-77983.html


GT

Kaplan GMAT Prep Discount CodesKnewton GMAT Discount CodesVeritas Prep GMAT Discount Codes
Manager
Manager
avatar
Joined: 19 Oct 2008
Posts: 96
Followers: 1

Kudos [?]: 2 [0], given: 0

Re: Five pieces of wood GMAT Prep PS [#permalink] New post 19 Mar 2009, 04:50
Excellent explanations. OA is 100.
Manager
Manager
User avatar
Joined: 05 Jan 2009
Posts: 84
Followers: 1

Kudos [?]: 6 [0], given: 2

GMATprep practice question:wood mean [#permalink] New post 07 Apr 2009, 09:40
Five pieces of wood have an average (arithmetic mean) length of 124 centimeters and a median length of 140 centimeters. What is the maximum possible length, in centimeters, of the shortest piece of wood?
90
100
110
130
140
Director
Director
avatar
Joined: 29 Aug 2005
Posts: 881
Followers: 7

Kudos [?]: 141 [0], given: 7

GMAT Tests User
Re: GMATprep practice question:wood mean [#permalink] New post 07 Apr 2009, 11:01
pmal04 wrote:
Five pieces of wood have an average (arithmetic mean) length of 124 centimeters and a median length of 140 centimeters. What is the maximum possible length, in centimeters, of the shortest piece of wood?
90
100
110
130
140


Sum of lengths = 124*5=620

Number line: _ _ 140 _ _

To maximize the first from the left, you need to minimize the numbers on the right of 140. Also you need to minimize the second from the left.
Ultimately, this will look like: 100 100 140 140 140

So, the answer is 100.
Manager
Manager
User avatar
Affiliations: CFA L3 Candidate, Grad w/ Highest Honors
Joined: 03 Nov 2007
Posts: 130
Location: USA
Schools: Chicago Booth R2 (WL), Wharton R2 w/ int, Kellogg R2 w/ int
WE 1: Global Operations (Futures & Portfolio Financing) - Hedge Fund ($10bn+ Multi-Strat)
WE 2: Investment Analyst (Credit strategies) - Fund of Hedge Fund ($10bn+ Multi-Strat)
Followers: 1

Kudos [?]: 22 [0], given: 9

Mean, Median and 5 pieces of wood [#permalink] New post 04 Aug 2009, 19:43
5 peices of wood have an average length of 124 inches and a median of 140 inches. What is the MAX possible length of the shortest piece of wood?

90
100
110
130
140

How would one write this algebraically?
3 KUDOS received
Intern
Intern
User avatar
Joined: 01 Aug 2009
Posts: 29
Location: Australia
Followers: 1

Kudos [?]: 13 [3] , given: 3

Re: Mean, Median and 5 pieces of wood [#permalink] New post 04 Aug 2009, 22:38
3
This post received
KUDOS
The median of 5 pieces is 140. Therefore, there are 2 pieces >=140.
Since, we want to maximize the smallest piece, we want to limit the largest piece(s) to the lowest value possible, because the larger the largest pieces the smaller the smallest pieces will have to be. But since the median is 140, it is the floor limit on the size of the 2 largest pieces...so the two largest pieces will have to be 140.

(A+B+140+140+140)/2 = 124 [where, A and B are the smaller pieces]

Since the question is asking for the maximum size of the smallest piece while preserving the average and median, A and B must be equal, so,
(2A+140+140+140)/2 = 124

A = 100.

Another way to think about it is, how averages are distributed among numbers. For every inch more the average, their has to be an inch less than the average. So, we have 3 numbers which are 16 each more than the average...in total 48 over the average. The two smaller pieces will have to be compensate this. And to get the maximum lowest value the compensation should be distributed evenly...each member should be 24 less than the average...124-24 = 100.
_________________

The three most significant times in your life are:
1. When you fall in love
2. The birth of your first child
3. When you prepare for your GMAT

Manager
Manager
avatar
Joined: 29 Jul 2009
Posts: 121
Followers: 2

Kudos [?]: 11 [0], given: 23

Re: Mean, Median and 5 pieces of wood [#permalink] New post 05 Aug 2009, 01:37
scarish wrote:
The median of 5 pieces is 140. Therefore, there are 2 pieces >=140.
Since, we want to maximize the smallest piece, we want to limit the largest piece(s) to the lowest value possible, because the larger the largest pieces the smaller the smallest pieces will have to be. But since the median is 140, it is the floor limit on the size of the 2 largest pieces...so the two largest pieces will have to be 140.

(A+B+140+140+140)/2 = 124 [where, A and B are the smaller pieces]
Since the question is asking for the maximum size of the smallest piece while preserving the average and median, A and B must be equal, so,
(2A+140+140+140)/2 = 124

A = 100.

Another way to think about it is, how averages are distributed among numbers. For every inch more the average, their has to be an inch less than the average. So, we have 3 numbers which are 16 each more than the average...in total 48 over the average. The two smaller pieces will have to be compensate this. And to get the maximum lowest value the compensation should be distributed evenly...each member should be 24 less than the average...124-24 = 100.


Great Explanation....kudos to you!! and a cool signature as well...IMO 100
SVP
SVP
User avatar
Joined: 05 Jul 2006
Posts: 1542
Followers: 5

Kudos [?]: 65 [0], given: 39

Re: Mean, Median and 5 pieces of wood [#permalink] New post 05 Aug 2009, 04:18
[quote="robertrdzak"]5 peices of wood have an average length of 124 inches and a median of 140 inches. What is the MAX possible length of the shortest piece of wood?

90
100
110
130
140

124*5 = 620 the median is the middle peice's lenght thus 2 peices are equall or bigger in length and 2 less

think of it as 2 hands of a scale and the axis is the median, one have to minimize the largest 2 values for eg: 140,140

thus the shortest 2 total lenght = 620-(140*3) = 200 , from the given the there must be a ( shortest piece) ie: the shortest 2 peices are not equal in length, from the values given , i d choose 90.
Intern
Intern
User avatar
Joined: 01 Aug 2009
Posts: 29
Location: Australia
Followers: 1

Kudos [?]: 13 [0], given: 3

Re: Mean, Median and 5 pieces of wood [#permalink] New post 05 Aug 2009, 04:47
apoorvasrivastva wrote:
Great Explanation....kudos to you!! and a cool signature as well...IMO 100

Thanks mate.. :beer

yezz wrote:
thus the shortest 2 total lenght = 620-(140*3) = 200 , from the given the there must be a ( shortest piece) ie: the shortest 2 peices are not equal in length, from the values given , i d choose 90.

Hmmm...I don't know about this. I mean we could then have 99 and 101 as the two smallest pieces. The question specifically asked for the greatest possible. Just choosing 90 because that's the lowest value available other than 100 doesn't sound right. Anyone else wanna have a crack :m16 at this.
_________________

The three most significant times in your life are:
1. When you fall in love
2. The birth of your first child
3. When you prepare for your GMAT

Senior Manager
Senior Manager
avatar
Joined: 17 Jul 2009
Posts: 301
Concentration: Nonprofit, Strategy
GPA: 3.42
WE: Engineering (Computer Hardware)
Followers: 1

Kudos [?]: 29 [0], given: 9

GMAT Tests User
Re: Mean, Median and 5 pieces of wood [#permalink] New post 05 Aug 2009, 12:11
my answer is still 100, since median is 140...for the shortest wood to be max is for the longest 3 to be shortest and have the remaining extra length subtracted between the last two short wood, so we have:

(124*5 - 140*3)/2 = 100
Manager
Manager
User avatar
Affiliations: CFA L3 Candidate, Grad w/ Highest Honors
Joined: 03 Nov 2007
Posts: 130
Location: USA
Schools: Chicago Booth R2 (WL), Wharton R2 w/ int, Kellogg R2 w/ int
WE 1: Global Operations (Futures & Portfolio Financing) - Hedge Fund ($10bn+ Multi-Strat)
WE 2: Investment Analyst (Credit strategies) - Fund of Hedge Fund ($10bn+ Multi-Strat)
Followers: 1

Kudos [?]: 22 [0], given: 9

Re: Mean, Median and 5 pieces of wood [#permalink] New post 06 Aug 2009, 15:56
scarish wrote:
The median of 5 pieces is 140. Therefore, there are 2 pieces >=140.
Since, we want to maximize the smallest piece, we want to limit the largest piece(s) to the lowest value possible, because the larger the largest pieces the smaller the smallest pieces will have to be. But since the median is 140, it is the floor limit on the size of the 2 largest pieces...so the two largest pieces will have to be 140.

(A+B+140+140+140)/2 = 124 [where, A and B are the smaller pieces]

Since the question is asking for the maximum size of the smallest piece while preserving the average and median, A and B must be equal, so,
(2A+140+140+140)/2 = 124

A = 100.

Another way to think about it is, how averages are distributed among numbers. For every inch more the average, their has to be an inch less than the average. So, we have 3 numbers which are 16 each more than the average...in total 48 over the average. The two smaller pieces will have to be compensate this. And to get the maximum lowest value the compensation should be distributed evenly...each member should be 24 less than the average...124-24 = 100.



Great process, thanks for the help!!!
Director
Director
User avatar
Joined: 25 Oct 2008
Posts: 611
Location: Kolkata,India
Followers: 8

Kudos [?]: 147 [0], given: 100

GMAT Tests User
Re: Mean, Median and 5 pieces of wood [#permalink] New post 26 Sep 2009, 17:41
Phew..NOT clear at all..
I struggled and made it through robertrdzak explanation but not clear in the last part of each pc being 100 and 100..why cant it be 90 and 110??

I solved it this way:
Mean of the length of five pieces = 124 So total length = 124*5 = 620.

Median = 140, so the length of rest of the 4 pieces = 620 - 140 = 480

Assume the 5 pieces in ascending order be X1 X2 140 X3 X4 where X1 is the shortest.

For X1 to be maximum, X3 and X4 has to be minimum but we have to keep in mind the median has to be 140...HERE i had to stop cos i really dnt know how to proceed furthurserious GAPS in fundamentals..:( HELP
_________________

countdown-beginshas-ended-85483-40.html#p649902

Manager
Manager
avatar
Joined: 15 Sep 2009
Posts: 139
Followers: 1

Kudos [?]: 15 [0], given: 2

Re: Mean, Median and 5 pieces of wood [#permalink] New post 27 Sep 2009, 01:03
I wud go with option 100.

Adding all the pieces we must get 480.So putting the larger 2 pieces as 140.We get addition of 2 smaller pieces as 200.
This leaves us with the length of each piece as 100.
Manager
Manager
User avatar
Joined: 25 Mar 2009
Posts: 57
Followers: 1

Kudos [?]: 10 [0], given: 9

Re: Mean, Median and 5 pieces of wood [#permalink] New post 28 Sep 2009, 09:58
robertrdzak wrote:
5 peices of wood have an average length of 124 inches and a median of 140 inches. What is the MAX possible length of the shortest piece of wood?

90
100
110
130
140

How would one write this algebraically?


x1<=x2<=x3=med<=x4<=x5
x1+x2+x3+x4+x5=620
Med=140 => x1+x2+x4+x5=480
we know that x4+x5>med+med=280 => x1+x2<480-280=200 => 2x1<=200 (coz x1<=x2)
=>x1<=100

So max x1=100

Last edited by Mikko on 28 Sep 2009, 23:23, edited 2 times in total.
Manager
Manager
avatar
Joined: 04 Sep 2009
Posts: 53
WE 1: Real estate investment consulting
Followers: 1

Kudos [?]: 16 [0], given: 7

Re: Mean, Median and 5 pieces of wood [#permalink] New post 28 Sep 2009, 14:19
tejal777 wrote:
ANYBODY?


Scarish provided a very good explanation above.

My approach was the same - maybe this one will be helpful to you:

Total sum = 124 x 5 = 620
Median is number 3 in the total order, meaning that number 4 and 5 cannot be smaller.

Now, the key here is to understand the question: it specifically asks for a maximum size of the smallest piece. They do not say that the size of piecese 4 & 5 is more than 140, nor do they say that the smaller pieces are not of equal size. If you understand this, you can make two assumptions:

1) Apply the value of the median to the pieces 4 & 5
2) Apply the same value to pieces 1 & 2

This way you maximize the size of 1 without breaking out of the terms of the question stem.

So here we go:

1) 3 + 4 + 5 = 140 x 3 = 420 => 1+2 = 620 - 420 = 200
2) Since 1+2=200 => 1 may equal maximum of 100.

Again, the key here is to really understand what is being asked. That way you can make the necessary assumptions.
1 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 31 Aug 2009
Posts: 422
Location: Sydney, Australia
Followers: 6

Kudos [?]: 101 [1] , given: 20

GMAT Tests User
Re: Mean, Median and 5 pieces of wood [#permalink] New post 28 Sep 2009, 18:05
1
This post received
KUDOS
tejal777 wrote:
Phew..NOT clear at all..
I struggled and made it through robertrdzak explanation but not clear in the last part of each pc being 100 and 100..why cant it be 90 and 110??


The smallest two pieces COULD be 90, 110. They could also be 80, 120. However, the question stem asks for what the MAX length could be for the smallest piece of wood. In both these situations the smallest piece is 90 and 80 i.e not maximised.

So {100, 100, 140, 140, 140} and {90,100,140,140,140} and many other sets satisfy the conditions for mean and median.
But in order to maximise the smallest piece 100 would be the only option. Hope that makes sense.
Director
Director
User avatar
Joined: 25 Oct 2008
Posts: 611
Location: Kolkata,India
Followers: 8

Kudos [?]: 147 [0], given: 100

GMAT Tests User
Re: Mean, Median and 5 pieces of wood [#permalink] New post 20 Oct 2009, 20:15
yangsta8:Thank you mate!!Got it!!
_________________

countdown-beginshas-ended-85483-40.html#p649902

Intern
Intern
avatar
Joined: 26 Nov 2009
Posts: 14
Followers: 0

Kudos [?]: 3 [0], given: 0

GMAT Prep Statistics Problem [#permalink] New post 13 Dec 2009, 16:53
Five pieces of wood have an average (arithmetic mean) of length of 124 cm and a median length of 140 cm. what is the max possible length, in com, of the shortest piece of wood?

a) 90
b) 100
c) 110
d) 130
e) 140


I chose (A).

Sum of 5 pieces of wood = 5(124) = 620.

a + b + 140 + d+ e = 620.

Therefore, I chose these numbers and got....

90 + 110 + 140 + 140 + 140 = 620, so hence (A) 90 was my answer. I'm not sure if this is correct. Can anyone tell me if it is or not?
Manager
Manager
User avatar
Status: Getting ready for the internship summer
Joined: 07 Jun 2009
Posts: 51
Location: Rochester, NY
Schools: Simon
WE 1: JPM - Treasury
Followers: 0

Kudos [?]: 18 [0], given: 23

Re: GMAT Prep Statistics Problem [#permalink] New post 13 Dec 2009, 17:02
I have (B).

Considerations:

b < 140
a \leq b

a + b + 140 + 140 + 140 = 620
a + b = 200

Therefore the largest value for a is 100.
VP
VP
avatar
Joined: 05 Mar 2008
Posts: 1477
Followers: 11

Kudos [?]: 193 [0], given: 31

GMAT Tests User
Re: GMAT Prep Statistics Problem [#permalink] New post 13 Dec 2009, 17:06
JimmyWorld wrote:
Five pieces of wood have an average (arithmetic mean) of length of 124 cm and a median length of 140 cm. what is the max possible length, in com, of the shortest piece of wood?

a) 90
b) 100
c) 110
d) 130
e) 140


I chose (A).

Sum of 5 pieces of wood = 5(124) = 620.

a + b + 140 + d+ e = 620.

Therefore, I chose these numbers and got....

90 + 110 + 140 + 140 + 140 = 620, so hence (A) 90 was my answer. I'm not sure if this is correct. Can anyone tell me if it is or not?


I'm getting B

100 + 100 + 140 + 140 + 140
Re: GMAT Prep Statistics Problem   [#permalink] 13 Dec 2009, 17:06
    Similar topics Author Replies Last post
Similar
Topics:
11 Experts publish their posts in the topic Five peices of wood have an average length of 124 inches and enigma123 7 20 Nov 2011, 04:49
Three pieces of wire have an average (arithmetic mean) chenhong1224 2 10 Oct 2008, 10:23
Another one that I'm stuck with. Five pieces of wood have an chronolinkz 3 03 Dec 2007, 14:33
Five pieces of wood have an average of 124centimeters and yogeshsheth 6 05 Nov 2006, 07:17
9 Five pieces of wood have an average length of 124cm and a novase101 15 08 Apr 2006, 08:04
Display posts from previous: Sort by

Five pieces of wood have an average length of 124cm and a

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1   2   3   4   5    Next  [ 87 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.