Find all School-related info fast with the new School-Specific MBA Forum

It is currently 22 Oct 2014, 04:56

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

For every positive even integer n, the function h(n) is

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Intern
Intern
avatar
Joined: 18 Sep 2009
Posts: 3
Location: Belarus
Followers: 0

Kudos [?]: 0 [0], given: 1

Re: Math Question [#permalink] New post 25 Feb 2010, 07:25
Can you prove my answer?
Expert Post
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23369
Followers: 3607

Kudos [?]: 28758 [0], given: 2846

Re: Math Question [#permalink] New post 25 Feb 2010, 07:36
Expert's post
ThePower wrote:
Can you prove my answer?


GMAT won't ask you to factor such a huge numbers as 2^{50}*50!+1. The stem of the question is enough to answer the question without factoring it. The answer is E (more than 40).
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Senior Manager
Senior Manager
avatar
Joined: 01 Feb 2010
Posts: 268
Followers: 1

Kudos [?]: 35 [0], given: 2

Re: Math Question [#permalink] New post 25 Feb 2010, 08:51
Bunuel wrote:
msv3763 wrote:
For every positive even integer n, the function h(n) is defnied to be the product of all the even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100)+1, then p is

Any help on how to get the correct answer? Thanks!

Answer: greater than 40


Welcome to the Gmat Club. Below is the solution for your question:

h(100)+1=2*4*6*...*100+1=2^{50}*(1*2*3*..*50)+1=2^{50}*50!+1

Now, two numbers h(100)=2^{50}*50! and h(100)+1=2^{50}*50!+1 are consecutive integers. Two consecutive integers are co-prime, which means that they don't share ANY common factor but 1. For example 20 and 21 are consecutive integers, thus only common factor they share is 1.

As h(100)=2^{50}*50! has all numbers from 1 to 50 as its factors, according to above h(100)+1=2^{50}*50!+1 won't have ANY factor from 1 to 50. Hence p (>1), the smallest factor of h(100)+1 will be more than 50.

Answer: More than 50.

Hope it helps.

P.S. Can you please: post one question per topic, tag the questions you post, and also post the whole questions with answer choices.


Good explanation.
Intern
Intern
avatar
Joined: 20 Aug 2009
Posts: 42
Followers: 1

Kudos [?]: 12 [0], given: 5

Re: Math Question [#permalink] New post 26 Feb 2010, 08:48
Bunuel wrote:
msv3763 wrote:
For every positive even integer n, the function h(n) is defnied to be the product of all the even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100)+1, then p is

Any help on how to get the correct answer? Thanks!




Answer: greater than 40


Welcome to the Gmat Club. Below is the solution for your question:

h(100)+1=2*4*6*...*100+1=2^{50}*(1*2*3*..*50)+1=2^{50}*50!+1

Now, two numbers h(100)=2^{50}*50! and h(100)+1=2^{50}*50!+1 are consecutive integers. Two consecutive integers are co-prime, which means that they don't share ANY common factor but 1. For example 20 and 21 are consecutive integers, thus only common factor they share is 1.

As h(100)=2^{50}*50! has all numbers from 1 to 50 as its factors, according to above h(100)+1=2^{50}*50!+1 won't have ANY factor from 1 to 50. Hence p (>1), the smallest factor of h(100)+1 will be more than 50.

Answer: More than 50.

Hope it helps.

P.S. Can you please: post one question per topic, tag the questions you post, and also post the whole questions with answer choices.


Very nice way of solving the problem. Bunuel, you make the problem look easy.
1 KUDOS received
GMAT Instructor
avatar
Joined: 24 Jun 2008
Posts: 978
Location: Toronto
Followers: 261

Kudos [?]: 706 [1] , given: 3

Re: Math Question [#permalink] New post 26 Feb 2010, 11:22
1
This post received
KUDOS
ThePower wrote:
Can you prove my answer?


There's no way to prove it without a computer; factoring large integers is one of the most time-consuming mathematical operations (unless they have very obvious factors). The fact that it is so time consuming to factor large numbers is actually the basis of internet encryption systems; you can hack the encryption, but you'd need 10,000 years of computing time to break down the large numbers involved. So Number Theory is the reason you can do banking, shopping or private email on the web.
_________________

Nov 2011: After years of development, I am now making my advanced Quant books and high-level problem sets available for sale. Contact me at ianstewartgmat at gmail.com for details.

Private GMAT Tutor based in Toronto

Manager
Manager
avatar
Joined: 18 Oct 2009
Posts: 53
Location: Alberta, Canada
Schools: Queen's E-MBA
Followers: 0

Kudos [?]: 15 [0], given: 7

Re: Function h(n) [#permalink] New post 27 Feb 2010, 22:15
an after thought.......

Cannot understand why according to above h (100)+1 won't have ANY factor from 1 to 50. Let's take the example of 20 & 21; is it true that 21 doesn't have any factor till 20? They won't have common factors like factors for 20 are 2 & 5 while of 21 are 7 & 3, but 21 does have factors less than 20.

Pl enlighten.
Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23369
Followers: 3607

Kudos [?]: 28758 [1] , given: 2846

Re: Function h(n) [#permalink] New post 27 Feb 2010, 22:36
1
This post received
KUDOS
Expert's post
ExecMBA2010 wrote:
an after thought.......

Cannot understand why according to above h (100)+1 won't have ANY factor from 1 to 50. Let's take the example of 20 & 21; is it true that 21 doesn't have any factor till 20? They won't have common factors like factors for 20 are 2 & 5 while of 21 are 7 & 3, but 21 does have factors less than 20.

Pl enlighten.


Not sure I understood your question correctly.

Anyway: given that p is the smallest prime factor of h(100)+1=2^{50}*50!+1. The point here is that consecutive integers do not share ANY common factor but 1. Two numbers h(100)=2^{50}*50! and h(100)+1=2^{50}*50!+1 are consecutive integers, hence these two integers do not share any common factor but 1. h(100)=2^{50}*50! naturally has all factors from 2 to 50, which means that h(100)+1=2^{50}*50!+1 does not have any of these factors. So, p, which is the prime factor of h(100)+1=2^{50}*50!+1 must be more than 50.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Manager
Manager
avatar
Joined: 18 Oct 2009
Posts: 53
Location: Alberta, Canada
Schools: Queen's E-MBA
Followers: 0

Kudos [?]: 15 [0], given: 7

Re: Function h(n) [#permalink] New post 28 Feb 2010, 06:18
Bunuel wrote:
Not sure I understood your question correctly.

Anyway: given that p is the smallest prime factor of h(100)+1=2^{50}*50!+1. The point here is that consecutive integers do not share ANY common factor but 1. Two numbers h(100)=2^{50}*50! and h(100)+1=2^{50}*50!+1 are consecutive integers, hence these two integers do not share any common factor but 1. h(100)=2^{50}*50! naturally has all factors from 2 to 50, which means that h(100)+1=2^{50}*50!+1 does not have any of these factors. So, p, which is the prime factor of h(100)+1=2^{50}*50!+1 must be more than 50.


I have got it now. Since h(100) has all the numbers from 2 to 50 as its factor h(100)+1 cannot have any of the numbers between 2 & 50 as its factor. Hence the lowest factor of h(100)+1 is either 1 or a number above 50.

Thanks.
Intern
Intern
avatar
Joined: 13 Apr 2010
Posts: 10
Followers: 0

Kudos [?]: 0 [0], given: 10

ps explanation ?!?!!? [#permalink] New post 14 Apr 2010, 05:58
#1 For every positive even integer n, the function h(n) is defined to be the product of all the even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100) +1, the p is?
A. btw 2 and 20
B. btw 10 and 20
C. btw 20 and 30
D. btw 30 and 40
E. greater than 40

#2 Pumps A, B, and C operate at their respective constant rates. Pumps A and B, operating simultaneously, can fill a certain tank in 6.5 hours; pumps A and C, operating simultaneously, can fill the tank in 3.2 hours; and pumps B and C, operating simultaneously, can fill the tank in 2 hours. How many hours does it take pumps A,B, and C operating simultaneously, to fill the tank?

#3 Last year certain bond with a face value of $5,000 yielded 8 percent of its face value in interest. If that interest was approximately 6.5 percent of the bond's selling price, approximately what was the bond's selling price?
$4,063
$5,325
$5,351
$6,000
$6,154
2 KUDOS received
Retired Moderator
User avatar
Joined: 01 Oct 2009
Posts: 486
Location: Bangalore,India
WE 1: 4yrs in IT Industry
Followers: 22

Kudos [?]: 112 [2] , given: 337

Re: ps explanation ?!?!!? [#permalink] New post 14 Apr 2010, 07:28
2
This post received
KUDOS
Quote:
#1 For every positive even integer n, the function h(n) is defined to be the product of all the even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100) +1, the p is?
A. btw 2 and 20
B. btw 10 and 20
C. btw 20 and 30
D. btw 30 and 40
E. greater than 40



Bit Tricky..
The function described will be in the form h(n)= 2^(n/2)*(n/2)!
h(100)+1= [(2^50)*50! +1]

By POE we can eliminate ABCD(because any prime number below 50 is a factor of 50!)

I feel the ans is E
_________________

One Final Try.......

2 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 01 Feb 2010
Posts: 268
Followers: 1

Kudos [?]: 35 [2] , given: 2

Re: ps explanation ?!?!!? [#permalink] New post 14 Apr 2010, 07:39
2
This post received
KUDOS
CC2HBS wrote:
#3 Last year certain bond with a face value of $5,000 yielded 8 percent of its face value in interest. If that interest was approximately 6.5 percent of the bond's selling price, approximately what was the bond's selling price?
$4,063
$5,325
$5,351
$6,000
$6,154

x- Selling Price
8%5000 = 6.5%x
x = (8 * 5000)/6.5
= 6154 hence E.
1 KUDOS received
Retired Moderator
User avatar
Joined: 01 Oct 2009
Posts: 486
Location: Bangalore,India
WE 1: 4yrs in IT Industry
Followers: 22

Kudos [?]: 112 [1] , given: 337

Re: ps explanation ?!?!!? [#permalink] New post 14 Apr 2010, 07:51
1
This post received
KUDOS
I tried to explain Q2 1 it is very hard to explain 2 it has a mammoth calculation :(

but can brief::: the answer will be (1/6.5 +1/3.2 + 1/2)*1/2...
_________________

One Final Try.......

1 KUDOS received
Retired Moderator
User avatar
Joined: 01 Oct 2009
Posts: 486
Location: Bangalore,India
WE 1: 4yrs in IT Industry
Followers: 22

Kudos [?]: 112 [1] , given: 337

Re: ps explanation ?!?!!? [#permalink] New post 14 Apr 2010, 07:55
1
This post received
KUDOS
CC2HBS can uprovide the answers
_________________

One Final Try.......

Expert Post
2 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23369
Followers: 3607

Kudos [?]: 28758 [2] , given: 2846

Re: ps explanation ?!?!!? [#permalink] New post 14 Apr 2010, 08:00
2
This post received
KUDOS
Expert's post
#1 For every positive even integer n, the function h(n) is defined to be the product of all the even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100) +1, the p is?
A. btw 2 and 20
B. btw 10 and 20
C. btw 20 and 30
D. btw 30 and 40
E. greater than 40

h(100)+1=2*4*6*...*100+1=2^{50}*(1*2*3*..*50)+1=2^{50}*50!+1

Now, two numbers h(100)=2^{50}*50! and h(100)+1=2^{50}*50!+1 are consecutive integers. Two consecutive integers are co-prime, which means that they don't share ANY common factor but 1. For example 20 and 21 are consecutive integers, thus only common factor they share is 1.

As h(100)=2^{50}*50! has all numbers from 1 to 50 as its factors, according to above h(100)+1=2^{50}*50!+1 won't have ANY factor from 1 to 50. Hence p (>1), the smallest factor of h(100)+1 will be more than 50.

Answer: E.


#2 Pumps A, B, and C operate at their respective constant rates. Pumps A and B, operating simultaneously, can fill a certain tank in 6.5 hours; pumps A and C, operating simultaneously, can fill the tank in 3.2 hours; and pumps B and C, operating simultaneously, can fill the tank in 2 hours. How many hours does it take pumps A,B, and C operating simultaneously, to fill the tank?

I think there is a typos in stem: times should be 6/5 (instead of 6.5) and 3/2 (instead of 3.2).

THEORY
If:
Time needed for A to complete the job =A hours;
Time needed for B to complete the job =B hours;
Time needed for C to complete the job =C hours;
...
Time needed for N to complete the job =N hours;

Then if time needed for all of them working simultaneously to complete the job is T, then: \frac{1}{A}+\frac{1}{B}+\frac{1}{C}+..+\frac{1}{N}=\frac{1}{T} (General formula).

For two and three entities (workers, pumps, ...):

General formula for calculating the time needed for two workers A and B working simultaneously to complete one job:

Given that a and b are the respective individual times needed for A and B workers (pumps, ...) to complete the job, then time needed for A and B working simultaneously to complete the job equals to T_{(A&B)}=\frac{a*b}{a+b} hours, which is reciprocal of the sum of their respective rates (\frac{1}{a}+\frac{1}{b}=\frac{1}{t}).

General formula for calculating the time needed for three A, B and C workers working simultaneously to complete one job:

T_{(A&B&C)}=\frac{a*b*c}{ab+ac+bc} hours.

Also for rate problems it's good to know that:

TIME to complete one job=Reciprocal of rate. eg 6 hours needed to complete one job (time) --> 1/6 of the job done in 1 hour (rate).

Time, rate and job in work problems are in the same relationship as time, speed (rate) and distance.

Time*Rate=Distance
Time*Rate=Job


Back to our original question.
We have:
\frac{1}{A}+\frac{1}{B}=\frac{1}{t_{a&b}}=\frac{5}{6}
\frac{1}{A}+\frac{1}{C}=\frac{1}{t_{a&c}}=\frac{2}{3}
\frac{1}{B}+\frac{1}{C}=\frac{1}{t_{b&c}}=\frac{1}{2}

Question: \frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{1}{T}, T=?

Sum the first three equations: 2(\frac{1}{A}+\frac{1}{B}+\frac{1}{C})=\frac{5}{6}+\frac{2}{3}+\frac{1}{2}=2 --> \frac{1}{A}+\frac{1}{B}+\frac{1}{C}=1=\frac{1}{T} --> T=1.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Intern
Intern
avatar
Joined: 13 Apr 2010
Posts: 10
Followers: 0

Kudos [?]: 0 [0], given: 10

Re: ps explanation ?!?!!? [#permalink] New post 14 Apr 2010, 08:07
RaviChandra wrote:
CC2HBS can uprovide the answers

first of all thx for all the kind explanations!! it is still confused to understand whole process but i guess i started to get a grip!
#1. greater than 40
#2. 1
#3. 6,154
Retired Moderator
User avatar
Joined: 01 Oct 2009
Posts: 486
Location: Bangalore,India
WE 1: 4yrs in IT Industry
Followers: 22

Kudos [?]: 112 [0], given: 337

Re: ps explanation ?!?!!? [#permalink] New post 14 Apr 2010, 19:00
Quote:
Pumps A, B, and C operate at their respective constant rates. Pumps A and B, operating simultaneously, can fill a certain tank in 6.5 hours; pumps A and C, operating simultaneously, can fill the tank in 3.2 hours; and pumps B and C, operating simultaneously, can fill the tank in 2 hours. How many hours does it take pumps A,B, and C operating simultaneously, to fill the tank?

I think there is a typos in stem: times should be 6/5 (instead of 6.5) and 3/2 (instead of 3.2)



How could you identify that there is a typo dude... ur simply great
_________________

One Final Try.......

Intern
Intern
avatar
Joined: 14 Sep 2009
Posts: 29
Followers: 0

Kudos [?]: 9 [0], given: 22

Questions from GMAT Prep practice exam (PLEASE HELP!) [#permalink] New post 03 May 2010, 12:02
For every positive even integer n, the function h(n) is defined to be the product of all even integers from 2 to n, inclusive. If p is the smallest prime factior of h (100) + 1, the p is:

* between 2 and 10
* between 10 & 20
* between 20 & 30
* between 30 & 40
* greater than 40


If n is a positive integer and the product of all integers from 1 to n inclusive is a multiple of 990, what is the least possible value of n?

*10
*11
*12
*13
*14
Senior Manager
Senior Manager
avatar
Joined: 25 Jun 2009
Posts: 313
Followers: 2

Kudos [?]: 77 [0], given: 6

Re: Questions from GMAT Prep practice exam (PLEASE HELP!) [#permalink] New post 03 May 2010, 12:05
If n is a positive integer and the product of all integers from 1 to n inclusive is a multiple of 990, what is the least possible value of n?

*10
*11
*12
*13
*14

Sol - Product of n numbers = 1*2*3.... n = n ! = 990 * K = 9* 10 *11 * K

The least possible value of n will be 11, as 11 is a prime number which is there in the product of the n numbers.
Director
Director
User avatar
Joined: 03 Sep 2006
Posts: 889
Followers: 6

Kudos [?]: 169 [0], given: 33

Re: Questions from GMAT Prep practice exam (PLEASE HELP!) [#permalink] New post 14 May 2010, 03:48
I will tell a more simple and direct solution for this question.

Remember the Wilson's Theorem

p divides (p-1)!+1 if p is prime. The converse is also true.

For instance, 7 is prime, and 7 divides (6!)+1=721

For h(100) = 100!

h(100)+1 = (100!+1)

Which (keeping the Wilson's theorem in mind) can be rewritten as

h(101-1)+1 = [ (101-1)! + 1 ]

101 is the prime which shall divide h(100)+1

and 101 is greater than 40, and choose this answer choice.

Magic lies in the Wilson's theorem, but if you remember the above mentioned method, it will help you in solving any similar or related question without any problem at all.
Intern
Intern
avatar
Joined: 09 Mar 2010
Posts: 1
Followers: 0

Kudos [?]: 0 [0], given: 0

Re: GMAT Prep Question on Integers [#permalink] New post 15 May 2010, 20:53
Great Explanation!
Re: GMAT Prep Question on Integers   [#permalink] 15 May 2010, 20:53
    Similar topics Author Replies Last post
Similar
Topics:
For every positive even integer n , the function h(n) is Snayt 8 21 Mar 2008, 02:36
3 Experts publish their posts in the topic For every positive even integer n, the function h(n) is topmbaseeker 13 09 Feb 2008, 14:21
7 1) For every positive even integer n, function h(n) is g1m2a3t406 6 24 Nov 2006, 13:25
For every positive even integer, n, the function h(n) is ffgmat 1 22 May 2006, 03:56
For every positive even integer n, the function hn) is john2005 5 07 May 2006, 13:17
Display posts from previous: Sort by

For every positive even integer n, the function h(n) is

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page   Previous    1  ...  3   4   5   6   7   8   9   10   11   12   13   14    Next  [ 273 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.