Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
The next set of PS questions. I'll post OA's with detailed explanations after some discussion. Please, post your solutions along with the answers.
1. The length of the diagonal of square S, as well as the lengths of the diagonals of rhombus R are integers. The ratio of the lengths of the diagonals is 15:11:9, respectively. Which of the following could be the difference between the area of square S and the area of rhombus R?
I. 63 II. 126 III. 252
A. I only B. II only C. III only D. I and III only E. I, II and III
4. The functions f and g are defined for all the positive integers n by the following rule: f(n) is the number of positive perfect squares less than n and g(n) is the number of primes numbers less than n. If f(x) + g(x) = 16, then x is in the range:
A. 30 < x < 36 B. 30 < x < 37 C. 31 < x < 37 D. 31 < x < 38 E. 32 < x < 38
Note that I cannot award more than 5 Kudos to the same person per day, so those of you who have more than 5 correct solutions please PM me tomorrow the links for which I owe you kudos points.
Hi Bunuel, Had the question been Which of the following is a factor of 18!+1?
A. 15 B. 17 C. 19 D. 33 E. None of These
Then, would it be possible to come at a conclusion that 19 will be the factor of 18!+1. In the original question, we came to the answer by eliminating other choices.
Hi Bunuel, Had the question been Which of the following is a factor of 18!+1?
A. 15 B. 17 C. 19 D. 33 E. None of These
Then, would it be possible to come at a conclusion that 19 will be the factor of 18!+1. In the original question, we came to the answer by eliminating other choices.
Please share your reasoning.
Thanks H
Yes, we could get the correct answer with Wilson's theorem, but you don't need it for the GMAT. _________________
Hi Bunuel, Had the question been Which of the following is a factor of 18!+1?
A. 15 B. 17 C. 19 D. 33 E. None of These
Then, would it be possible to come at a conclusion that 19 will be the factor of 18!+1. In the original question, we came to the answer by eliminating other choices.
Please share your reasoning.
Thanks H
Hi himanshu. According to Wilson's Theorem, if P is a prime no. then the remainder when (p-1)! is divided by p is (p-1) Therefore, 18! on division by 19 will give 18 as a remainder. Now 18+1 is divisible by 19 therefore answer to your query is 19. add kudos if this helped you
Hi Bunuel, this seemed like a great way to earn kudos points, Would you be having more questionaires like this in future also? as it sorta helps to boost up the kudos for people who have recently joined the forum and want to make it in time to get to the gmatclub tests by earning kudos. _________________
PS: Like my approach? Please Help me with some Kudos.
Hello.. Can someone please explain why "x" ( 15x:11x:9x) needs to be an integer? Why not 1.5?
We are told that the length of the diagonals are integers and their ratio is 15:11:9. This means that the lengths are multiples of 15, 11 and 9. If x=1.5, then the lengths won't be integers.
3. How many different subsets of the set {0, 1, 2, 3, 4, 5} do not contain 0?
A. 16 B. 27 C. 31 D. 32 E. 64
Consider the set without 0: {1, 2, 3, 4, 5}. Each out of 5 elements of the set {1, 2, 3, 4, 5} has TWO options: either to be included in the subset or not, so total number of subsets of this set is 2^5=32. Now, each such set will be a subset of {0, 1, 2, 3, 4, 5} and won't include 0.
Answer: D.
Hi Bunuel,
I did this exercise as follows:
I eliminate the 0, so i have the following set: (1,2,3,4,5). Now, i use combinatorics.
Set containing 5 elements: 5C5=1 Set containing 4 elements: 4C5=5 Set containing 3 elements: 3C5=10 Set containing 2 elements: 2C5=10 Set containing 1 elements: 1C5=5
So, the total of posibilites are 31. What am I missing here¿??
Thanks in advance
You are missing 1 empty set, which is a subset of the original set and also does not contain 0.
3. How many different subsets of the set {0, 1, 2, 3, 4, 5} do not contain 0?
A. 16 B. 27 C. 31 D. 32 E. 64
Consider the set without 0: {1, 2, 3, 4, 5}. Each out of 5 elements of the set {1, 2, 3, 4, 5} has TWO options: either to be included in the subset or not, so total number of subsets of this set is 2^5=32. Now, each such set will be a subset of {0, 1, 2, 3, 4, 5} and won't include 0.
Answer: D.
Hi Bunuel,
I did this exercise as follows:
I eliminate the 0, so i have the following set: (1,2,3,4,5). Now, i use combinatorics.
Set containing 5 elements: 5C5=1 Set containing 4 elements: 4C5=5 Set containing 3 elements: 3C5=10 Set containing 2 elements: 2C5=10 Set containing 1 elements: 1C5=5
So, the total of posibilites are 31. What am I missing here¿??
Thanks in advance
You are missing 1 empty set, which is a subset of the original set and also does not contain 0.
1. The length of the diagonal of square S, as well as the lengths of the diagonals of rhombus R are integers. The ratio of the lengths of the diagonals is 15:11:9, respectively. Which of the following could be the difference between the area of square S and the area of rhombus R?
I. 63 II. 126 III. 252
A. I only B. II only C. III only D. I and III only E. I, II and III
Given that the ratio of the diagonal is \(d_s:d_1:d_2=15x:11x:9x\), for some positive integer x (where \(d_s\) is the diagonal of square S and \(d_1\) and \(d_2\) are the diagonals of rhombus R).
\(area_{square}=\frac{d^2}{2}\) and \(area_{rhombus}=\frac{d_1*d_2}{2}\).
The difference is \(area_{square}-area_{rhombus}=\frac{(15x)^2}{2}-\frac{11x*9x}{2}=63x^2\).
If x=1, then the difference is 63; If x=2, then the difference is 252; In order the difference to be 126 x should be \(\sqrt{2}\), which is not possible.
Answer: D.
Hi Bunuel,
This is probably a stupid question. But why can't x be \sqrt{2}?
1. The length of the diagonal of square S, as well as the lengths of the diagonals of rhombus R are integers. The ratio of the lengths of the diagonals is 15:11:9, respectively. Which of the following could be the difference between the area of square S and the area of rhombus R?
I. 63 II. 126 III. 252
A. I only B. II only C. III only D. I and III only E. I, II and III
Given that the ratio of the diagonal is \(d_s:d_1:d_2=15x:11x:9x\), for some positive integer x (where \(d_s\) is the diagonal of square S and \(d_1\) and \(d_2\) are the diagonals of rhombus R).
\(area_{square}=\frac{d^2}{2}\) and \(area_{rhombus}=\frac{d_1*d_2}{2}\).
The difference is \(area_{square}-area_{rhombus}=\frac{(15x)^2}{2}-\frac{11x*9x}{2}=63x^2\).
If x=1, then the difference is 63; If x=2, then the difference is 252; In order the difference to be 126 x should be \(\sqrt{2}\), which is not possible.
Answer: D.
Hi Bunuel,
This is probably a stupid question. But why can't x be \sqrt{2}?
Okay. I got it. Stupid me. They have to be integers
The “3 golden nuggets” of MBA admission process With ten years of experience helping prospective students with MBA admissions and career progression, I will be writing this blog through...
You know what’s worse than getting a ding at one of your dreams schools . Yes its getting that horrid wait-listed email . This limbo is frustrating as hell . Somewhere...