Goldenrod and No Hope are in a horse race with 6 contestants : GMAT Problem Solving (PS)
Check GMAT Club App Tracker for the Latest School Decision Releases http://gmatclub.com/AppTrack

 It is currently 09 Dec 2016, 13:09

# Live Now:

Sentence Correction Methods with Manhattan Prep

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Goldenrod and No Hope are in a horse race with 6 contestants

Author Message
TAGS:

### Hide Tags

Intern
Joined: 18 Jul 2009
Posts: 15
Followers: 1

Kudos [?]: 27 [0], given: 5

Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

10 Aug 2009, 19:40
17
This post was
BOOKMARKED
00:00

Difficulty:

35% (medium)

Question Stats:

63% (01:00) correct 37% (01:20) wrong based on 676 sessions

### HideShow timer Statistics

Goldenrod and No Hope are in a horse race with 6 contestants. How many different arrangements of finishes are there if No Hope always finishes before Goldenrod and if all of the horses finish the race?

(A) 720
(B) 360
(C) 120
(D) 24
(E) 21
[Reveal] Spoiler: OA
Intern
Joined: 26 Jul 2009
Posts: 5
Followers: 0

Kudos [?]: 0 [0], given: 1

Re: GoldenRod and No Hope. [#permalink]

### Show Tags

11 Aug 2009, 02:16
just think of it like this

THere are 6 possible outcomes for person A to finish the race
and 5 for person B and so on

so u should multpily them all 6X5X4X...

and u get 720
Senior Manager
Status: mba here i come!
Joined: 07 Aug 2011
Posts: 270
Followers: 42

Kudos [?]: 1043 [3] , given: 48

Re: GoldenRod and No Hope. [#permalink]

### Show Tags

16 Jan 2012, 05:27
3
KUDOS
combinations are symmetrical, so in half combinations goldenrod will be ahead and in exactly half it will be behind.

ans: 6!/2 = 360
_________________

press +1 Kudos to appreciate posts

Math Expert
Joined: 02 Sep 2009
Posts: 35932
Followers: 6860

Kudos [?]: 90091 [4] , given: 10413

Re: GoldenRod and No Hope. [#permalink]

### Show Tags

16 Jan 2012, 06:37
4
KUDOS
Expert's post
4
This post was
BOOKMARKED
Goldenrod and No Hope are in a horse race with 6 contestants. How many different arrangements of finishes are there if No Hope always finishes before Goldenrod and if all of the horses finish the race?

(A) 720
(B) 360
(C) 120
(D) 24
(E) 21

All 6 horses can finish the race in 6! way (assuming no tie).

If no tie is possible between No Hope and Goldenrod, then in half of these cases No Hope will be before Goldenrod and in half of these cases after (not necessarily right before or right after). How else? So, there are 6!/2=360 different arrangements of finishes where No Hope always finishes before Goldenrod.

Similar question: six-mobsters-have-arrived-at-the-theater-for-the-premiere-of-the-126151.html
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 35932
Followers: 6860

Kudos [?]: 90091 [0], given: 10413

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

22 May 2013, 02:59
Bumping for review and further discussion.
_________________
Intern
Joined: 03 May 2013
Posts: 4
Location: India
Concentration: Economics, Marketing
GMAT Date: 07-31-2013
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 5 [0], given: 9

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

23 May 2013, 06:48
I have solved this in below fashion

Attachment:

gamtQ2.png [ 2.97 KiB | Viewed 5909 times ]

So, When 'N' finishes first then there are 5 places where G can take (i.e 5 ways)
When 'N' finishes second then there are 4 places where G can take (i.e 4 ways)
When 'N' finishes third then there are 3 places where G can take (i.e 3 ways)
...

No of ways is 5*4*3*2 = 120.

please explain flaw in my explanation.

VP
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1123
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Followers: 180

Kudos [?]: 1913 [5] , given: 219

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

23 May 2013, 07:39
5
KUDOS
vishnuvardhan777 wrote:
I have solved this in below fashion

When 'N' finishes second then there are 4 places where G can take (i.e 4 ways)
When 'N' finishes third then there are 3 places where G can take (i.e 3 ways)
...

No of ways is 5*4*3*2 = 120.

please explain flaw in my explanation.

The most effective way to solve this is Bunuel's. However if we wanna take your approach more calculus are needed:

first of all 6 spots to fill _ _ _ _ _ _
If 'N' finishes first then the other 5 spots can be filled in $$5!$$ ways N 5 4 3 2 1

And now it gets complicated...
If 'N' second then the other 5 spots can be filled in $$4*4!$$ ways 4 N 4 3 2 1. Why this?
N is in second position and there are 5 horses left. Of those only 4 can occupy the first position (every horse EXCEPT g), so write 4 on the first line.
We have 4 slots left and 4 horses => 4 3 2 1 for the remaining spots

With the same method if N finished 3rd, we get $$4*3*3!$$ ways 4 3 N 3 2 1
N on the third slot, 5 horses left. The first spot can be occupied by 4 horses (every horse EXCEPT g), the second can be occupied by three horses (every horse EXCEPT g and the previusly chosen one); then for the others spots we have 3 horses => 3! ways.
if N finished 4th, we get $$4*3*2*2!$$ ways 4 3 2 N 2 1
if N finished 5th, we get $$4*3*2*1$$ ways 4 3 2 1 N 1

Sum them up and you get 360. This approach however is really long

Hope it's clear
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

Intern
Joined: 03 May 2013
Posts: 4
Location: India
Concentration: Economics, Marketing
GMAT Date: 07-31-2013
WE: Information Technology (Computer Software)
Followers: 0

Kudos [?]: 5 [0], given: 9

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

23 May 2013, 07:54
I will also apply the brunel specified method.

I just wanted to know where I went wrong and correct my understanding.
Math Expert
Joined: 02 Sep 2009
Posts: 35932
Followers: 6860

Kudos [?]: 90091 [2] , given: 10413

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

23 May 2013, 08:41
2
KUDOS
Expert's post
vishnuvardhan777 wrote:
I have solved this in below fashion

Attachment:
gamtQ2.png

So, When 'N' finishes first then there are 5 places where G can take (i.e 5 ways)
When 'N' finishes second then there are 4 places where G can take (i.e 4 ways)
When 'N' finishes third then there are 3 places where G can take (i.e 3 ways)
...

No of ways is 5*4*3*2 = 120.

please explain flaw in my explanation.

If N is on the first place G can take ANY of the remaining 5 places and the remaining 4 horses can be arranged in 4! number of ways: 5*4!=120;
If N is on the second place G can take 4 places and the remaining 4 horses can be arranged in 4! number of ways: 4*4!=96;
If N is on the third place G can take 3 places and the remaining 4 horses can be arranged in 4! number of ways: 3*4!=72;
If N is on the fourth place G can take 2 places and the remaining 4 horses can be arranged in 4! number of ways: 2*4!=48;
If N is on the fifth place G can take only 1 place and the remaining 4 horses can be arranged in 4! number of ways: 1*4!=24;

120+96+72+48+24=360.

Hope it's clear.
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 35932
Followers: 6860

Kudos [?]: 90091 [0], given: 10413

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

23 May 2013, 08:43
vishnuvardhan777 wrote:
I have solved this in below fashion

Attachment:
gamtQ2.png

So, When 'N' finishes first then there are 5 places where G can take (i.e 5 ways)
When 'N' finishes second then there are 4 places where G can take (i.e 4 ways)
When 'N' finishes third then there are 3 places where G can take (i.e 3 ways)
...

No of ways is 5*4*3*2 = 120.

please explain flaw in my explanation.

Questions about the same concept to practice:
susan-john-daisy-tim-matt-and-kim-need-to-be-seated-in-130743.html
meg-and-bob-are-among-the-5-participants-in-a-cycling-race-58095.html
in-how-many-different-ways-can-the-letters-a-a-b-91460.html
mary-and-joe-are-to-throw-three-dice-each-the-score-is-the-126407.html

Hope it helps.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 12904
Followers: 562

Kudos [?]: 158 [0], given: 0

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

08 Sep 2014, 07:40
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Current Student
Status: The Final Countdown
Joined: 07 Mar 2013
Posts: 297
Concentration: Technology, General Management
GMAT 1: 710 Q47 V41
GPA: 3.84
WE: Information Technology (Computer Software)
Followers: 5

Kudos [?]: 71 [0], given: 444

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

29 Nov 2014, 06:07
@Bunuel,I used the method you explained later but i want to use the first method(All cases by 2) next time..How do i come to know in which questions i can use this approach..that in half cases one thing must have happened and in the other half cases the other thing?
Intern
Joined: 04 Mar 2014
Posts: 12
Concentration: Marketing, General Management
Followers: 0

Kudos [?]: 2 [0], given: 5

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

29 Nov 2014, 08:57
Bunuel wrote:
Goldenrod and No Hope are in a horse race with 6 contestants. How many different arrangements of finishes are there if No Hope always finishes before Goldenrod and if all of the horses finish the race?

(A) 720
(B) 360
(C) 120
(D) 24
(E) 21

All 6 horses can finish the race in 6! way (assuming no tie).

If no tie is possible between No Hope and Goldenrod, then in half of these cases No Hope will be before Goldenrod and in half of these cases after (not necessarily right before or right after). How else? So, there are 6!/2=360 different arrangements of finishes where No Hope always finishes before Goldenrod.

Similar question: six-mobsters-have-arrived-at-the-theater-for-the-premiere-of-the-126151.html

Here's my thinking:
order (from 2nd-8th place) of 6 horses does't matter. So we have 6!=720 choices
720 choices include 2 cases: No Hope comes first and Goldenrod comes first.
Final answer is 720/2=360. Please correct me if there is anything wrong. Thanks
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 12904
Followers: 562

Kudos [?]: 158 [0], given: 0

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

07 Dec 2015, 17:29
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Intern
Joined: 06 Feb 2016
Posts: 7
Location: United Arab Emirates
GMAT 1: 690 Q49 V35
GPA: 3.2
Followers: 0

Kudos [?]: 0 [0], given: 1193

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

27 Mar 2016, 11:20
Hi Veterans,
I have a query, Since Glen and No Hope are always fixed wr to each other, cant we just combine them into an entity and thus have 5 entities left with us which can be arranged in 5! ways ? However, this gives wrong answer.

Thanks a ton!
Math Expert
Joined: 02 Sep 2009
Posts: 35932
Followers: 6860

Kudos [?]: 90091 [0], given: 10413

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

27 Mar 2016, 11:41
mikeonbike wrote:
Hi Veterans,
I have a query, Since Glen and No Hope are always fixed wr to each other, cant we just combine them into an entity and thus have 5 entities left with us which can be arranged in 5! ways ? However, this gives wrong answer.

Thanks a ton!

No Hope always finishes before Goldenrod does NOT mean that No Hope always finishes right before Goldenrod, there might be some other contestants between them.
_________________
Intern
Joined: 06 Feb 2016
Posts: 7
Location: United Arab Emirates
GMAT 1: 690 Q49 V35
GPA: 3.2
Followers: 0

Kudos [?]: 0 [0], given: 1193

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

27 Mar 2016, 11:46
Thanks Bunuel, clear as a crystal!

Bunuel wrote:
mikeonbike wrote:
Hi Veterans,
I have a query, Since Glen and No Hope are always fixed wr to each other, cant we just combine them into an entity and thus have 5 entities left with us which can be arranged in 5! ways ? However, this gives wrong answer.

Thanks a ton!

No Hope always finishes before Goldenrod does NOT mean that No Hope always finishes right before Goldenrod, there might be some other contestants between them.
Intern
Joined: 30 May 2016
Posts: 3
Followers: 0

Kudos [?]: 0 [0], given: 6

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

10 Jun 2016, 00:49
Hi Veterans,

I have a very embarrassing doubt,

The question stem reads "Goldenrod and No Hope are in a horse race with 6 contestants" doesn't that means we have 8 horses in the race ? (By calculating 6! and dividing it by 2 will only give stats about the 6 horses !!)
Senior Manager
Joined: 23 Apr 2015
Posts: 339
Location: United States
WE: Engineering (Consulting)
Followers: 5

Kudos [?]: 63 [0], given: 36

Re: Goldenrod and No Hope are in a horse race with 6 contestants [#permalink]

### Show Tags

24 Aug 2016, 12:05
MohitRulz wrote:
Goldenrod and No Hope are in a horse race with 6 contestants. How many different arrangements of finishes are there if No Hope always finishes before Goldenrod and if all of the horses finish the race?

(A) 720
(B) 360
(C) 120
(D) 24
(E) 21

There are 6 horses and hence 6! outcomes are possible and in that 1/2 the time No Hope will be ahead of Goldenrod and 1/2 the times lag.
So it's $$\frac{6!}{2}$$ = 360 (B)
Re: Goldenrod and No Hope are in a horse race with 6 contestants   [#permalink] 24 Aug 2016, 12:05
Similar topics Replies Last post
Similar
Topics:
11 In a horse race, horse A runs clockwise 5 08 May 2014, 08:40
18 A ranch has both horses and ponies. Exactly 5/6 of the 15 10 May 2012, 05:10
7 In a particular 100 meter race, 6 athletes are participating that are 6 29 Oct 2011, 00:41
2 Goldenrod and No Hope are in a horse race with 6 contestants 16 12 Jul 2011, 01:11
49 On a race track a maximum of 5 horses can race together at 27 10 Oct 2009, 02:56
Display posts from previous: Sort by