Find all School-related info fast with the new School-Specific MBA Forum

It is currently 25 Oct 2014, 13:30

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Graphic approach to problems with inequalities

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
Expert Post
44 KUDOS received
CEO
CEO
User avatar
Joined: 17 Nov 2007
Posts: 3573
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 367

Kudos [?]: 1856 [44] , given: 359

GMAT ToolKit User Premium Member
Graphic approach to problems with inequalities [#permalink] New post 29 Jul 2008, 03:51
44
This post received
KUDOS
Expert's post
48
This post was
BOOKMARKED
Hi all! My friend, Tarek, PM me and asked me to show how to use the graphic approach to problem with inequalities. I really love such approach because it is not only fast one after training, but also reliable. So, I try to illustrate how to use it.

1) If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

1. First of all, we draw x/y>2. x/y=2 - is a boundary. (see figure 1). we should note that if one of the variables is negative and other is positive, x/y will be always negative and less than 2. Therefore, our set of x,y that satisfied x/y>2 lies between line x/y=2 and x-axis.

2. Next, we draw our main inequality: 3x+2y<18. 3x+2y=18 - is a boundary. (see figure 2).

3. Now, we should combine our main inequality with the restriction, x/y>2. (see figure 3). Eventually, we defined two areas (sets) were the main inequality is TRUE and were it is FALSE. Two lines intersect in point P with coordinates: (4.5;2.25).

4. Let's consider fist condition: x-y<2. x-y=2 is a boundary. (see figure 4). As we can see all y,x that satisfies the fist condition lie in "green-TRUE" region. Therefore, the first statement is sufficient to answer the question. We should be careful and check where line x-y=2 passes point P, through left side or right side. We can put y=2.25 into x-y=2 and find that x=4.25<4.5 (left side). In other words, line x-y=2 passes y=2.25 (y-coordinate of P) early and goes above P.

5. Finally, let's check last condition: y-x<2. y-x=2 is a boundary. (see figure 5). As we can see all y,x that satisfies the second condition lie in both "green-TRUE" and "red-FALSE" regions. Thus, the second condition is insufficient.

So, answer is A

This approach took less than 2 minutes.

Tips:

1) How fast can we draw a line, for example 3x+2y=18? Simple approach: we need two points to draw line, let's choose intersections with x- and y- axes. x=0 (intersection with y-axis) --> y=9; y=0 (intersection with x-axis) --> x=6.

2) Let's suppose we have a linear inequality, such as 38y-11x>121, suppose we've already drawn the line. How can we find what side is "true" and what side is "false"? The fastest method is just use y=0,x=-infinity. In our case, 0-(-infinity)=infinity>121 - true. Therefore, we take a left side.

see also: http://gmatclub.com/forum/7-t75657

That's all :)
Regards,
Serg a.k.a. Walker

Attachment:
tarek99.png
tarek99.png [ 17.04 KiB | Viewed 31170 times ]


see also post by Nach0: Quick Way to Graph Inequalities
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Kaplan GMAT Prep Discount CodesKnewton GMAT Discount CodesManhattan GMAT Discount Codes
Expert Post
5 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28972 [5] , given: 2874

Re: Graphic approach to problems with inequalities [#permalink] New post 30 Aug 2010, 15:50
5
This post received
KUDOS
Expert's post
mainhoon wrote:
Can someone solve this without the graphical approach? Bunuel?


My solution from: tough-inequality-challange-89225.html?hilit=walker%20graphic#p732298

If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

\frac{x}{y}>2 tells us that x and y are either both positive or both negative, which means that all points (x,y) satisfying given inequality are either in I or III quadrant. When they are both negative (in III quadrant) inequality 3x+2y<18 is always true, so we should check only for I quadrant, or when both x and y are positive.

In I quadrant, as x and y are both positive, we can rewrite \frac{x}{y}>2 as x>2y>0 (remember x>0 and y>0).

So basically question becomes: If x>0 and y>0 and x>2y>0, is 3x+2y<18?

(1) x-y<2.

Subtract inequalities x>2y and x-y<2 (we can do this as signs are in opposite direction) --> x-(x-y)>2y-2 --> y<2.

Now add inequalities x-y<2 and y<2 (we can do this as signs are in the same direction) --> x-y+y<2+2 --> x<4.

We got y<2 and x<4. If we take maximum values x=4 and y=2 and substitute in 3x+2y<18, we'll get 12+4=16<18.

Sufficient.

(2) y-x<2 and x>2y:
x=3 and y=1 --> 3x+2y=11<18 true.
x=11 and y=5 --> 3x+2y=43<18 false.

Not sufficient.

Answer: A.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Get the best GMAT Prep Resources with GMAT Club Premium Membership

Expert Post
4 KUDOS received
CEO
CEO
User avatar
Joined: 17 Nov 2007
Posts: 3573
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 367

Kudos [?]: 1856 [4] , given: 359

GMAT ToolKit User Premium Member
Re: Graphic approach to problems with inequalities [#permalink] New post 29 Jul 2008, 04:02
4
This post received
KUDOS
Expert's post
This is a so powerful approach that I decided to spent some time to illustrate it. Good luck all with your exam!
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

2 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 06 Jul 2007
Posts: 286
Followers: 3

Kudos [?]: 33 [2] , given: 0

Re: Graphic approach to problems with inequalities [#permalink] New post 20 Mar 2009, 12:11
2
This post received
KUDOS
walker wrote:
Hi all! My friend, Tarek, PM me and asked me to show how to use the graphic approach to problem with inequalities. I really love such approach because it is not only fast one after training, but also reliable. So, I try to illustrate how to use it.

1) If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

1. First of all, we draw x/y>2. x/y=2 - is a boundary. (see figure 1). we should note that if one of the variables is negative and other is positive, x/y will be always negative and less than 2. Therefore, our set of x,y that satisfied x/y>2 lies between line x/y=2 and x-axis.

2. Next, we draw our main inequality: 3x+2y<18. 3x+2y=18 - is a boundary. (see figure 2).

3. Now, we should combine our main inequality with the restriction, x/y>2. (see figure 3). Eventually, we defined two areas (sets) were the main inequality is TRUE and were it is FALSE. Two lines intersect in point P with coordinates: (4.5;2.25).

4. Let's consider fist condition: x-y<2. x-y=2 is a boundary. (see figure 4). As we can see all y,x that satisfies the fist condition lie in "green-TRUE" region. Therefore, the first statement is sufficient to answer the question. We should be careful and check where line x-y=2 passes point P, through left side or right side. We can put y=2.25 into x-y=2 and find that x=4.25<4.5 (left side). In other words, line x-y=2 passes y=2.25 (y-coordinate of P) early and goes above P.

5. Finally, let's check last condition: y-x<2. y-x=2 is a boundary. (see figure 5). As we can see all y,x that satisfies the second condition lie in both "green-TRUE" and "red-FALSE" regions. Thus, the second condition is insufficient.

So, answer is A

This approach took less than 2 minutes.

Tips:

1) How fast can we draw a line, for example 3x+2y=18? Simple approach: we need two points to draw line, let's choose intersections with x- and y- axes. x=0 (intersection with y-axis) --> y=9; y=0 (intersection with x-axis) --> x=6.

2) Let's suppose we have a linear inequality, such as 38y-11x>121, suppose we've already drawn the line. How can we find what side is "true" and what side is "false"? The fastest method is just use y=0,x=-infinity. In our case, 0-(-infinity)=infinity>121 - true. Therefore, we take a left side.

see also: http://gmatclub.com/forum/7-t75657

That's all :)
Regards,
Serg a.k.a. Walker

Attachment:
tarek99.png


see also post by Nach0: Quick Way to Graph Inequalities



There is another easier method to solve such questions. Let's take the same example to illustrate the method.

given : x > 2y

so we can write x = 2y + k where k is a positive number - equation 1

Fact 1 : x - y < 2

we can rewrite this as x -y + m =2 where m is a positive number - equation 2

solving equation 1 and equation 2

y = 2 -m - k AND x = 2 - m + y = (4 -2m -k)

=> 3x + 2y = 12 - 6m -3k + 4 - 2m - 2k = 16 -8m - 5k

so, 3x + 2y = 16 -8m -5k which is less than 18

now considering fact 2

Fact 2 : y - x < 2

we can rewrite this as y -x +m = 2 - equation 3

solving equation 1 and equation 3

y = m -2 -k and x = 2m -k -4

=> 3x + 2y = 8m -5k -16 which may or may not be less than 18 (since m and k may be of any positive value)

Hence A.
Expert Post
1 KUDOS received
CEO
CEO
User avatar
Joined: 17 Nov 2007
Posts: 3573
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 367

Kudos [?]: 1856 [1] , given: 359

GMAT ToolKit User Premium Member
Re: Graphic approach to problems with inequalities [#permalink] New post 03 Aug 2008, 09:27
1
This post received
KUDOS
Expert's post
bigfernhead wrote:
Hi - can someone help me explain Tip #2? I don't really understand what it is saying. Thanks.


See fig.2 - we have line 3x+2y=18. Where is 3x+2y<18? left or right side? we put x=-infinity and y=0 --> -infinity<18. Is is correct? Yes. Therefore, left side corresponds to 3x+2y<18 (orange color in fig.2)
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Expert Post
1 KUDOS received
CEO
CEO
User avatar
Joined: 17 Nov 2007
Posts: 3573
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 367

Kudos [?]: 1856 [1] , given: 359

GMAT ToolKit User Premium Member
Re: Graphic approach to problems with inequalities [#permalink] New post 07 Mar 2009, 10:28
1
This post received
KUDOS
Expert's post
kbulse wrote:
I didn't know that :oops: , i was hesitating whether to ask that question, now I am glad that I asked about that. Thanks

No problem :) that is why we all are here
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

1 KUDOS received
Intern
Intern
avatar
Joined: 10 Mar 2009
Posts: 3
Followers: 0

Kudos [?]: 1 [1] , given: 0

Re: Graphic approach to problems with inequalities [#permalink] New post 10 Mar 2009, 00:30
1
This post received
KUDOS
Let's consider fist condition: x-y<2. x-y=2 is a boundary. (see figure 4). As we can see all y,x that satisfies the fist condition lie in "green-TRUE" region. Therefore, the first statement is sufficient to answer the question. We should be careful and check where line x-y=2 passes point P, through left side or right side. We can put x=4.5 into x-y=2 and find that y=4.25<4.5 (left side).





Hi ! Can you please clarify the above part for me. According to me, to check for point p, if we put x=4.5 and y = 2.25, we get 4.5-2.25=2.25, which does not satisfy the inequality x-y<2 and thus lie in the false region. I am a little confused here, trying my hands at this for the first time, please correct me if I am wrong.
Expert Post
1 KUDOS received
CEO
CEO
User avatar
Joined: 17 Nov 2007
Posts: 3573
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 367

Kudos [?]: 1856 [1] , given: 359

GMAT ToolKit User Premium Member
Re: Graphic approach to problems with inequalities [#permalink] New post 10 Mar 2009, 02:34
1
This post received
KUDOS
Expert's post
Thanks, there is a typo here:
Instead of
walker wrote:
... We can put x=4.5 into x-y=2 and find that y=4.25<4.5 (left side).


should be: ... We can put x=4.5 into x-y=2 and find that y=2.5>2.25 (left side, line x-y=2 goes above P).
or even better: ... We can put y=2.25 into x-y=2 and find that x=4.25<4.5 (left side). In other words, line x-y=2 passes y=2.25 (y-coordinate of P) early and goes above P.

I've fixed it in original post.
+1
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Expert Post
1 KUDOS received
CEO
CEO
User avatar
Joined: 17 Nov 2007
Posts: 3573
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 367

Kudos [?]: 1856 [1] , given: 359

GMAT ToolKit User Premium Member
Re: Graphic approach to problems with inequalities [#permalink] New post 11 Mar 2009, 10:34
1
This post received
KUDOS
Expert's post
priyankur_saha@ml.com wrote:
...
But at x=4.5, actual value of y is 2.25, which is, indeed, not greater than 2.5!! What should I look for from this statement?

I guess I am missing something..... :? .


Figure 3. We have "true" and "false" regions. What happens in remaining area we don't care as the area doesn't satisfies problem's conditions.
Figure 4. Part of "true/false" regions is gray because it doesn't satisfy x-y<2 condition. Only in "color" part x-y<2 is true.

But in Figure4 we could have doubt about point P: where line x-y<2 passes P, left-above or bottom-right. In first case we will have only "true" region and in second case - "true" and "false" regions. As you correctly pointed out at x=4.5 y=2.5>2.25. So, point P is not included in "color" region (P does not satisfy x-y<2 condition) and x-y<2 passes left-above. So that, we can conclude we have only "true" region.
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Expert Post
1 KUDOS received
CEO
CEO
User avatar
Joined: 17 Nov 2007
Posts: 3573
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 367

Kudos [?]: 1856 [1] , given: 359

GMAT ToolKit User Premium Member
Re: Graphic approach to problems with inequalities [#permalink] New post 31 Dec 2009, 03:54
1
This post received
KUDOS
Expert's post
sher1978 wrote:
How to identify true or false regions?

Why condition 1 is sufficient and condition 2 is not.As to me both of them have some points on true region and some on false region.

Let's say you have y>2x+1. You draw line y=2x+1 and above region is TRUE, below is FALSE. If you have some doubts about that, you may check any point from regions. For example, point (1,100) is above and 100>2+1 is TRUE.

No, only second condition has points on true and false regions. All points for first condition are on true region. (see figures)
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

Expert Post
1 KUDOS received
CEO
CEO
User avatar
Joined: 17 Nov 2007
Posts: 3573
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40
Followers: 367

Kudos [?]: 1856 [1] , given: 359

GMAT ToolKit User Premium Member
Re: Graphic approach to problems with inequalities [#permalink] New post 02 Jul 2011, 05:28
1
This post received
KUDOS
Expert's post
fivedaysleft wrote:
i have a doubt...while plotting x/y>2...i multiplied both sides with y and got the inequality x>2y .....


Your problem is a typical one for inequalities and modulus questions. You just forget to consider the case when y is negative.
Here is what you should do:

1. x/y >2
2. x >2y (y>0) & x <2y (y<0)
3. solve both inequalities BUT don't forget to apply conditions (y>0 and y<0). For example, in your plot y can't be negative.

By the way, try to check out whether the answer makes sense. Moreover, sometimes it's useful think a bit about expression at the beginning. For example, x/y > 2 only if x and y have the same sign. So, your last graph fails to pass this test.

Actually, that is why I used graphic approach as it allows to avoid such kind of mistakes.
_________________

HOT! GMAT TOOLKIT 2 (iOS) / GMAT TOOLKIT (Android) - The OFFICIAL GMAT CLUB PREP APP, a must-have app especially if you aim at 700+ | PrepGame

1 KUDOS received
Intern
Intern
avatar
Joined: 30 Nov 2010
Posts: 48
Followers: 0

Kudos [?]: 6 [1] , given: 27

Re: Graphic approach to problems with inequalities [#permalink] New post 28 Jul 2011, 09:14
1
This post received
KUDOS
Bunuel wrote:
mainhoon wrote:
Can someone solve this without the graphical approach? Bunuel?


My solution from: tough-inequality-challange-89225.html?hilit=walker%20graphic#p732298

If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

\frac{x}{y}>2 tells us that x and y are either both positive or both negative, which means that all points (x,y) satisfying given inequality are either in I or III quadrant. When they are both negative (in III quadrant) inequality 3x+2y<18 is always true, so we should check only for I quadrant, or when both x and y are positive.

In I quadrant, as x and y are both positive, we can rewrite \frac{x}{y}>2 as x>2y>0 (remember x>0 and y>0).

So basically question becomes: If x>0 and y>0 and x>2y>0, is 3x+2y<18?

(1) x-y<2.

Subtract inequalities x>2y and x-y<2 (we can do this as signs are in opposite direction) --> x-(x-y)>2y-2 --> y<2.

Now add inequalities x-y<2 and y<2 (we can do this as signs are in the same direction) --> x-y+y<2+2 --> x<4.

We got y<2 and x<4. If we take maximum values x=4 and y=2 and substitute in 3x+2y<18, we'll get 12+4=16<18.

Sufficient.

(2) y-x<2 and x>2y:
x=3 and y=1 --> 3x+2y=11<18 true.
x=11 and y=5 --> 3x+2y=43<18 false.

Not sufficient.

Answer: A.


Sorry for being naive. Can you please to me the second part of the solution when you conclude it as "Not sufficient". How did you get the numbers 3, 1, 11,5 ?
Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4877
Location: Pune, India
Followers: 1157

Kudos [?]: 5381 [1] , given: 165

Re: Graphic approach to problems with inequalities [#permalink] New post 10 Mar 2013, 23:49
1
This post received
KUDOS
Expert's post
Dipankar6435 wrote:
Those were helpful indeed :-D. Thanks. Your Quarter Wit, Quarter Wisdom blog is an eye opener. However i feel that question could have been solved faster by an algebric approach, but only because we were provided that both x and y are positive. In absence of such constraints i think the graphical approach will be faster. Another query though. I found this mentioned at the end of the post. I hope you have come to appreciate the wide range of applicability of graphs. Next time, I will introduce a graphical way of working with Modulus and Inequalities. Could I get a link for that. Thnx in advance
And i faintly remember learning some tricks about plotting graphs in my high school. Something to the tune of-"Graph of y=kx can be drawn by expanding the graph of y=x by k times and y=K+x can be drawn by shifting y=x by k units(to the left or right?? :roll: ) Do i need to revisit those for the GMAT??


Sure, you can use either method - it depends on what you are more comfortable with. I find working with equations/inequalities way too cumbersome and have developed an ease with graphs (with practice of course). I prefer to take a holistic view and figure out the answer since GMAT questions are basically logic based, (and hence the ample use of graphs). You might find that graphs slow you down initially but with practice, they can save you a lot of time. Anyway, both the methods work perfectly fine so choose whichever you like more.
I have many posts on Mods and inequalities peppered in-between other posts on my blog. I would suggest you to start from the bottom of the last page and go upwards checking out the posts that catch your fancy: http://www.veritasprep.com/blog/categor ... om/page/3/

And yes, those tricks help you approach the questions keeping the big picture in mind. In fact I have discussed some of them here:
http://www.veritasprep.com/blog/2010/12 ... he-graphs/

They are not essential to know if you plan to use algebra for most questions. They can be quite helpful if you plan on working out the questions using the holistic approaches.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Expert Post
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 23422
Followers: 3617

Kudos [?]: 28972 [1] , given: 2874

Re: Graphic approach to problems with inequalities [#permalink] New post 30 Aug 2013, 05:07
1
This post received
KUDOS
Expert's post
1 KUDOS received
Manager
Manager
avatar
Joined: 07 Apr 2012
Posts: 127
Location: United States
Concentration: Entrepreneurship, Operations
Schools: ISB '15
GMAT 1: 590 Q48 V23
GPA: 3.9
WE: Operations (Manufacturing)
Followers: 0

Kudos [?]: 9 [1] , given: 45

Re: Graphic approach to problems with inequalities [#permalink] New post 30 Aug 2013, 05:26
1
This post received
KUDOS
For most of the cases - yes (for example for lines or parabolas).[/quote]
One more thing in questions involving greater or less than, a solutions can be infinite.


In the attached image when y > x, and x < 1, we can have infinite solutions, right ?
if y < x , x < 1 again infinte solutions, right ?

So can we safely say if there are 'two' inequalities having less than or greater than condition, we can never have finite solutions , or number of solutions is indeterminate ?
Attachments

Doc1.pdf [4.25 KiB]
Downloaded 24 times

To download please login or register as a user

Expert Post
1 KUDOS received
Veritas Prep GMAT Instructor
User avatar
Joined: 16 Oct 2010
Posts: 4877
Location: Pune, India
Followers: 1157

Kudos [?]: 5381 [1] , given: 165

Re: Graphic approach to problems with inequalities [#permalink] New post 11 Aug 2014, 21:17
1
This post received
KUDOS
Expert's post
alphonsa wrote:
Can you please tell me how do you know which region to shade? :( :(
I mean , to the left? or right? above or below the x axis?

How do you find out :?:


So you draw the line showing the equation represented by the inequality. How do you decide which side of the line does the inequality represent. Usually, you can do that by plugging in (0, 0) in the equation. The point (0, 0) will lie on one side of the line. Put x = 0 and y = 0 in your inequality. If it holds, it means the inequality holds for point (0, 0) and hence will hold for that entire side of the line. So you shade the side where (0, 0) lies.
If the inequality does not hold when you put (0, 0), it means (0, 0) is not a solution of the inequality and hence the inequality holds for the opposite side so you shade the opposite side.

If the line passes through (0, 0) try any other point which obviously lies on one side of the line.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Save $100 on Veritas Prep GMAT Courses And Admissions Consulting
Enroll now. Pay later. Take advantage of Veritas Prep's flexible payment plan options.

Veritas Prep Reviews

Director
Director
avatar
Joined: 27 May 2008
Posts: 552
Followers: 5

Kudos [?]: 178 [0], given: 0

Re: Graphic approach to problems with inequalities [#permalink] New post 29 Jul 2008, 03:55
Thanks Walker, I use this approach for such problems, but sometime I'm too lazy to make a diagram on computer and post it.. :wink: I prefer pen and paper....
Senior Manager
Senior Manager
User avatar
Joined: 14 Mar 2007
Posts: 319
Location: Hungary
Followers: 1

Kudos [?]: 16 [0], given: 3

Re: Graphic approach to problems with inequalities [#permalink] New post 29 Jul 2008, 05:21
Thnanks for sharing this kind of approach. I will use this approach. Great job.

Thanks again.
Manager
Manager
avatar
Joined: 27 Mar 2008
Posts: 81
Followers: 1

Kudos [?]: 14 [0], given: 0

Re: Graphic approach to problems with inequalities [#permalink] New post 30 Jul 2008, 07:44
walker wrote:
Hi all! My friend, Tarek, PM me and asked me to show how to use the graphic approach to problem with inequalities. I really love such approach because it is not only fast one after training, but also reliable. So, I try to illustrate how to use it.

1) If (x/y)>2, is 3x+2y<18?

(1) x-y is less than 2
(2) y-x is less than 2

1. First of all, we draw x/y>2. x/y=2 - is a boundary. (see figure 1). we should note that if one of the variables is negative and other is positive, x/y will be always negative and less than 2. Therefore, our set of x,y that satisfied x/y>2 lies between line x/y=2 and x-axis.

2. Next, we draw our main inequality: 3x+2y<18. 3x+2y=18 - is a boundary. (see figure 2).

3. Now, we should combine our main inequality with the restriction, x/y>2. (see figure 3). Eventually, we defined two areas (sets) were the main inequality is TRUE and were it is FALSE. Two lines intersect in point P with coordinates: (4.5;2.25).

4. Let's consider fist condition: x-y<2. x-y=2 is a boundary. (see figure 4). As we can see all y,x that satisfies the fist condition lie in "green-TRUE" region. Therefore, the first statement is sufficient to answer the question. We should be careful and check where line x-y=2 passes point P, through left side or right side. We can put x=4.5 into x-y=2 and find that y=4.25<4.5 (left side).

5. Finally, let's check last condition: y-x<2. y-x=2 is a boundary. (see figure 5). As we can see all y,x that satisfies the second condition lie in both "green-TRUE" and "red-FALSE" regions. Thus, the second condition is insufficient.

So, answer is A

This approach took less than 2 minutes.

Additional tip: Let's suppose we have a linear inequality, such as 38y-11x>121, suppose we've already drawn the line. How can we find what side is "true" and what side is "false"? The fastest method is just use y=0,x=-infinity. In our case, 0-(-infinity)=infinity>121 - true. Therefore, we take a left side.That's all :)

Regards,
Serg a.k.a. Walker



never thought of using this approach. brilliant!
Senior Manager
Senior Manager
User avatar
Joined: 19 Mar 2008
Posts: 354
Followers: 1

Kudos [?]: 15 [0], given: 0

Re: Graphic approach to problems with inequalities [#permalink] New post 30 Jul 2008, 07:55
i have no talent in using this, but thanks, good advice!
Re: Graphic approach to problems with inequalities   [#permalink] 30 Jul 2008, 07:55
    Similar topics Author Replies Last post
Similar
Topics:
8 Experts publish their posts in the topic Solving Quadratic Inequalities: Graphic Approach Bunuel 1 23 Apr 2014, 10:57
2 inequality graphical approach, what to shade? see inside ... stunn3r 2 25 Sep 2013, 04:28
Experts publish their posts in the topic Solving Inequalities Graphically: Is Graph Paper Allowed Hussain15 7 25 Jan 2010, 08:42
Graphic approach to problems with inequalities-Alternatives? kaptain 0 06 Dec 2009, 04:46
genric way to approach inequalities problem without graphs krishan 0 04 Mar 2009, 12:53
Display posts from previous: Sort by

Graphic approach to problems with inequalities

  Question banks Downloads My Bookmarks Reviews Important topics  

Go to page    1   2   3   4   5   6    Next  [ 108 posts ] 



GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.