Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

when 2 fair dice are rolled what is the probability of having 6 as sum of the resulting numbers? A 1/12 B 1/6 C 5/6 D 5/36 E 1/2

can you solve it.... because i got an answer but i cannot understand why it is wrong.

There are 36 possible outcomes when a pair of dice is rolled (6 for the first die X 6 for the second one). From this 36 outcomes five have a total of 6, {(1,5), (5,1), (2,4), (4,2), (3,3)}, hence the probability of the two numbers adding up to 6 is \(\frac{5}{36}\).

i have choosen 1/6 cuz I have thought that there are 6 possible outcomes 5,1 1,5 4,2 2,4 3,3 and again 3,3 because 3,3 can happen 2 times... why dont you count 3,3 2 times?

i have choosen 1/6 cuz I have thought that there are 6 possible outcomes 5,1 1,5 4,2 2,4 3,3 and again 3,3 because 3,3 can happen 2 times... why dont you count 3,3 2 times?

When we count (4,2) and (2,4), it means that we get: 4 on die #1 and 2 on die #2 in first case and 2 on dies #1 and 4 on die #2 in the second case.

With (3,3) we have only one case: 3 on #1 die and 3 on #2 die, there is no case two.

thank you... my approach was wrong! KUDOS FOR YOU!

Bunuel wrote:

lucalelli88 wrote:

i have choosen 1/6 cuz I have thought that there are 6 possible outcomes 5,1 1,5 4,2 2,4 3,3 and again 3,3 because 3,3 can happen 2 times... why dont you count 3,3 2 times?

When we count (4,2) and (2,4), it means that we get: 4 on die #1 and 2 on die #2 in first case and 2 on dies #1 and 4 on die #2 in the second case.

With (3,3) we have only one case: 3 on #1 die and 3 on #2 die, there is no case two.

With (3,3) we have only one case: 3 on #1 die and 3 on #2 die, there is no case two.

Hope it's clear.

well bit confused.... i think it means it is not times ie 1 time and 2nd time rather it is in 1st dice and in second dice... but suppose if die we colored green and blue would it be like 3 on G ,3 on B and 3 on B ,3 on G?

With (3,3) we have only one case: 3 on #1 die and 3 on #2 die, there is no case two.

Hope it's clear.

well bit confused.... i think it means it is not times ie 1 time and 2nd time rather it is in 1st dice and in second dice... but suppose if die we colored green and blue would it be like 3 on G ,3 on B and 3 on B ,3 on G?

Can you please clarify?

Not sure I understood your question...

There are only following 5 cases possible to have sum of 6:

#1|#2 1---5 2---4 3---3 4---2 5---1

Do we have any other case? It doesn't matter whether dice are colored, they are already numbered. (3,3) means 3 on die #1 and 3 on die #2 (3 on die #2 and 3 on die #1 is basically the same case). _________________

So, my final tally is in. I applied to three b schools in total this season: INSEAD – admitted MIT Sloan – admitted Wharton – waitlisted and dinged No...

HBS alum talks about effective altruism and founding and ultimately closing MBAs Across America at TED: Casey Gerald speaks at TED2016 – Dream, February 15-19, 2016, Vancouver Convention Center...