Find all School-related info fast with the new School-Specific MBA Forum

It is currently 16 Apr 2014, 12:19

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

How many 4 digit codes can be made, if each code can only

  Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:
5 KUDOS received
Intern
Intern
Joined: 01 Sep 2010
Posts: 23
Followers: 1

Kudos [?]: 30 [5] , given: 8

How many 4 digit codes can be made, if each code can only [#permalink] New post 04 Oct 2010, 06:00
5
This post received
KUDOS
00:00
A
B
C
D
E

Difficulty:

  5% (low)

Question Stats:

50% (02:40) correct 50% (01:30) wrong based on 6 sessions
Hi all,

As you saw, I have published a bunch of questions in the past hour. Most of these questions are taken from a collection of hard quantitative questions provided by The Princeton Review (a.k.a - Killer Math).

I have posted any question that I have solved incorrectly, either due to careless error or concept error, in order to share them with everyone here.

Please consider the following problem that I am not sure I understood:

How many 4 digit codes can be made, if each code can only contain prime numbers that are less than 20?

A. 24
B. 102
C. 464
D. 656
E. 5040

Thank you all for the help and detailed explanations (especially you - Bunuel).
It is very helpful.
[Reveal] Spoiler: OA

Last edited by Bunuel on 09 Jul 2013, 07:44, edited 1 time in total.
RENAMED THE TOPIC.
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 17283
Followers: 2868

Kudos [?]: 18333 [1] , given: 2345

GMAT Tests User CAT Tests
Re: 4 digit codes [#permalink] New post 04 Oct 2010, 07:41
1
This post received
KUDOS
Expert's post
eladshush wrote:
Hi all,

As you saw, I have published a bunch of questions in the past hour. Most of these questions are taken from a collection of hard quantitative questions provided by The Princeton Review (a.k.a - Killer Math).

I have posted any question that I have solved incorrectly, either due to careless error or concept error, in order to share them with everyone here.

Please consider the following problem that I am not sure I understood:

How many 4 digit codes can be made, if each code can only contain prime numbers that are less than 20?

A. 24
B. 102
C. 464
D. 656
E. 5040

Thank you all for the help and detailed explanations (especially you - Bunuel).
It is very helpful.


The question is a little bit ambiguous but I think it means the following:

I guess as it's not mentioned primes can be repeated.

There are:
4 one digit primes (O) less than 20 - 2, 3, 5, 7;
4 two digit primes (T) less than 20 - 11, 13, 17, 19;

Thus 4-digit number could be of the following type:

OOOO, for example: 2|3|5|7 or 2|2|7|7. Each O can take 4 values from {2, 3, 5, 7}, so total ways for this type is 4^4;

TT, for example: 11|11 or 19|17. Each T can take 4 values from {11, 13, 17, 19}, so total ways for this type is 4^2;

TOO, for example: 11|3|5 or 19|7|2. T can take 4 values from {11, 13, 17, 19} and each O can take 4 values from {2, 3, 5, 7}, so total ways for this type is 4*4^2=4^3;
OTO, for example: 2|13|5 or 7|19|2. The same as above: 4^3;
OOT, for example: 2|5|19 or 7|2|17. The same as above: 4^3;

Total: 4^4+4^2+3*4^3=464.

Answer: C.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

2 KUDOS received
Retired Moderator
User avatar
Joined: 02 Sep 2010
Posts: 807
Location: London
Followers: 74

Kudos [?]: 394 [2] , given: 25

GMAT ToolKit User GMAT Tests User Reviews Badge
Re: 4 digit codes [#permalink] New post 04 Oct 2010, 07:45
2
This post received
KUDOS
eladshush wrote:
Hi all,

As you saw, I have published a bunch of questions in the past hour. Most of these questions are taken from a collection of hard quantitative questions provided by The Princeton Review (a.k.a - Killer Math).

I have posted any question that I have solved incorrectly, either due to careless error or concept error, in order to share them with everyone here.

Please consider the following problem that I am not sure I understood:

How many 4 digit codes can be made, if each code can only contain prime numbers that are less than 20?

A. 24
B. 102
C. 464
D. 656
E. 5040

Thank you all for the help and detailed explanations (especially you - Bunuel).
It is very helpful.


First note all the single digit primes {2,3,5,7}
And then all the 2-digit ones {11,13,17,19}

Case 1
Codes formed with 2 two digit primes
(2-digit prime) (2-digit prime)
No of ways = 4x4 = 16

Case 2
Codes formed with 4 one digit primes
(1-digit prime) (1-digit prime) (1-digit prime) (1-digit prime)
No of ways = 4x4x4x4 = 256

Case 3
Codes formed with 2 one-digit primes and 1 two-digit prime
(1-digit prime) (1-digit prime) (2-digit prime)
(1-digit prime) (2-digit prime) (1-digit prime)
(2-digit prime) (1-digit prime) (1-digit prime)
Each set can be formed in 4x4x4 ways
So total = 3x64 = 192


Total number = 192+256+16 = 464

Answer is (c)

PS : Some others also deserve thanks :wink:
_________________

Math write-ups
1) Algebra-101 2) Sequences 3) Set combinatorics 4) 3-D geometry

My GMAT story

Intern
Intern
Joined: 01 Sep 2010
Posts: 23
Followers: 1

Kudos [?]: 30 [0], given: 8

Re: 4 digit codes [#permalink] New post 04 Oct 2010, 08:41
Hi guys,
Thanks you BOTH for the explanation. It is clear now.
You got +1 from me.
Manager
Manager
Joined: 26 Mar 2010
Posts: 125
Followers: 2

Kudos [?]: 5 [0], given: 17

Re: 4 digit codes [#permalink] New post 05 Oct 2010, 12:33
Bunuel wrote:
eladshush wrote:
Hi all,

As you saw, I have published a bunch of questions in the past hour. Most of these questions are taken from a collection of hard quantitative questions provided by The Princeton Review (a.k.a - Killer Math).

I have posted any question that I have solved incorrectly, either due to careless error or concept error, in order to share them with everyone here.

Please consider the following problem that I am not sure I understood:

How many 4 digit codes can be made, if each code can only contain prime numbers that are less than 20?

A. 24
B. 102
C. 464
D. 656
E. 5040

Thank you all for the help and detailed explanations (especially you - Bunuel).
It is very helpful.


The question is a little bit ambiguous but I think it means the following:

I guess as it's not mentioned primes can be repeated.

There are:
4 one digit primes (O) less than 20 - 2, 3, 5, 7;
4 two digit primes (T) less than 20 - 11, 13, 17, 19;

Thus 4-digit number could be of the following type:

OOOO, for example: 2|3|5|7 or 2|2|7|7. Each O can take 4 values from {2, 3, 5, 7}, so total ways for this type is 4^4;

TT, for example: 11|11 or 19|17. Each T can take 4 values from {11, 13, 17, 19}, so total ways for this type is 4^2;

TOO, for example: 11|3|5 or 19|7|2. T can take 4 values from {11, 13, 17, 19} and each O can take 4 values from {2, 3, 5, 7}, so total ways for this type is 4*4^2=4^3;
OTO, for example: 2|13|5 or 7|19|2. The same as above: 4^3;
OOT, for example: 2|5|19 or 7|2|17. The same as above: 4^3;

Total: 4^4+4^2+3*4^3=464.

Answer: C.



Hi Bunuel,

why can't i write TOO,OTO,OOT AS

(4^3)*3! , taking the T as one entity ans assuming that 3 things can be arranged in 3! ways???
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 17283
Followers: 2868

Kudos [?]: 18333 [0], given: 2345

GMAT Tests User CAT Tests
Re: 4 digit codes [#permalink] New post 05 Oct 2010, 12:37
Expert's post
utin wrote:
Hi Bunuel,

why can't i write TOO,OTO,OOT AS

(4^3)*3! , taking the T as one entity ans assuming that 3 things can be arranged in 3! ways???



Just one thing: TOO can be arranged in 3!/2! ways and not in 3! (# of permutations of 3 letters out which 2 O's are identical is 3!/2!), so it would be 4^3*\frac{3!}{2!}=4^3*3.

Hope it's clear.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Manager
Manager
Joined: 26 Mar 2010
Posts: 125
Followers: 2

Kudos [?]: 5 [0], given: 17

Re: 4 digit codes [#permalink] New post 05 Oct 2010, 12:53
Bunuel wrote:
utin wrote:
Hi Bunuel,

why can't i write TOO,OTO,OOT AS

(4^3)*3! , taking the T as one entity ans assuming that 3 things can be arranged in 3! ways???



Just one thing: TOO can be arranged in 3!/2! ways and not in 3! (# of permutations of 3 letters out which 2 O's are identical is 3!/2!), so it would be 4^3*\frac{3!}{2!}=4^3*3.

Hope it's clear.



I though about the same but but when i see that TOO as three things to be arranged in 3! ways then i also thought that OO ARE TWO DIGITS AND THEY ARE TWO DIFFERENT PRIME NOS SO WHY DIVIDE BY 2!


this might clear my entire probability confusion i hope... :)
1 KUDOS received
Math Expert
User avatar
Joined: 02 Sep 2009
Posts: 17283
Followers: 2868

Kudos [?]: 18333 [1] , given: 2345

GMAT Tests User CAT Tests
Re: 4 digit codes [#permalink] New post 05 Oct 2010, 13:01
1
This post received
KUDOS
Expert's post
utin wrote:
Bunuel wrote:
utin wrote:
Hi Bunuel,

why can't i write TOO,OTO,OOT AS

(4^3)*3! , taking the T as one entity ans assuming that 3 things can be arranged in 3! ways???



Just one thing: TOO can be arranged in 3!/2! ways and not in 3! (# of permutations of 3 letters out which 2 O's are identical is 3!/2!), so it would be 4^3*\frac{3!}{2!}=4^3*3.

Hope it's clear.



I though about the same but but when i see that TOO as three things to be arranged in 3! ways then i also thought that OO ARE TWO DIGITS AND THEY ARE TWO DIFFERENT PRIME NOS SO WHY DIVIDE BY 2!


this might clear my entire probability confusion i hope... :)


First of all two 1-digit primes can be the same, but it's not important here.

We are counting # of ways 4-digit number can be formed with two 1-digit primes and one 2-digit prime:
{1-digit}{1-digit}{2-digit}
{1-digit}{2-digit}{1-digit}
{2-digit}{1-digit}{1-digit}

Total 3 ways.
_________________

NEW TO MATH FORUM? PLEASE READ THIS: ALL YOU NEED FOR QUANT!!!

PLEASE READ AND FOLLOW: 11 Rules for Posting!!!

RESOURCES: [GMAT MATH BOOK]; 1. Triangles; 2. Polygons; 3. Coordinate Geometry; 4. Factorials; 5. Circles; 6. Number Theory; 7. Remainders; 8. Overlapping Sets; 9. PDF of Math Book; 10. Remainders; 11. GMAT Prep Software Analysis NEW!!!; 12. SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) NEW!!!; 12. Tricky questions from previous years. NEW!!!;

COLLECTION OF QUESTIONS:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS ; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
25 extra-hard Quant Tests

Manager
Manager
Joined: 26 Mar 2010
Posts: 125
Followers: 2

Kudos [?]: 5 [0], given: 17

Re: 4 digit codes [#permalink] New post 05 Oct 2010, 13:59
Thanks Bunuel... +1 ... u already have many I knw :)
Re: 4 digit codes   [#permalink] 05 Oct 2010, 13:59
    Similar topics Author Replies Last post
Similar
Topics:
New posts How many 3-letter code words can be made if at least one of Dan 2 04 Jun 2005, 21:19
New posts A door can be opened only with a security code that consists cool_jonny009 8 14 Nov 2005, 18:53
New posts How many four digit numbers divisible by 4 can be made with karvid 5 31 Jan 2006, 06:38
New posts A code is made from a sequence of 4 letters. How many lfox2 3 09 Oct 2006, 23:00
New posts Experts publish their posts in the topic How many 5 digit ( digit = 0 - 9 ) zip codes can exist in wh HopefulOldie 7 10 Nov 2009, 09:47
Display posts from previous: Sort by

How many 4 digit codes can be made, if each code can only

  Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Privacy Policy| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.