Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.
Customized for You
we will pick new questions that match your level based on your Timer History
Track Your Progress
every week, we’ll send you an estimated GMAT score based on your performance
Practice Pays
we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
It appears that you are browsing the GMAT Club forum unregistered!
Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club
Registration gives you:
Tests
Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.
Applicant Stats
View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more
Books/Downloads
Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!
Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:
How many different four-letter words can be formed (the words don't [#permalink]
12 Dec 2007, 11:15
1
This post received KUDOS
5
This post was BOOKMARKED
00:00
A
B
C
D
E
Difficulty:
95% (hard)
Question Stats:
30% (03:21) correct
70% (01:43) wrong based on 112 sessions
How many different four letter words can be formed (the words need not be meaningful) using the letters of the word MEDITERRANEAN such that the first letter is E and the last letter is R?
A. 59 B. 11!/(2!*2!*2!) C. 56 D. 23 E. 11!/(3!*2!*2!*2!)
Re: How many different four-letter words can be formed (the words don't [#permalink]
13 Dec 2007, 02:41
young_gun wrote:
How many different four letter words can be formed (the words need not be meaningful) using the letters of the word MEDITERRANEAN such that the first letter is E and the last letter is R?
A. 59 B. 11!/2!*2!*2! C. 56 D. 23 E. 11!/3!*2!*2!*2!
Please, could you explain that to me so that I can easily understand?? I am very bad at perms!
Re: How many different four-letter words can be formed (the words don't [#permalink]
13 Dec 2007, 04:37
Expert's post
marcodonzelli wrote:
I understand point 1 and point 2 as well...but why N=(3*8+5*7)?thanks
for letters of E,A,N at second position we have 8 cases for third one. So, 3*8
for letters of M,D,I,T,R at second position we have 7 cases for third one (we cannot use, for example, M twice). So, 5*7
Re: How many different four-letter words can be formed (the words don't [#permalink]
13 Dec 2007, 13:32
3
This post received KUDOS
young_gun wrote:
How many different four letter words can be formed (the words need not be meaningful) using the letters of the word MEDITERRANEAN such that the first letter is E and the last letter is R?
A. 59 B. 11!/2!*2!*2! C. 56 D. 23 E. 11!/3!*2!*2!*2!
We have 11 letters after E and R occupied their places. But E, A and N show up twice each. So we have 8 distinct letters for 2 places.
For the second place - 8 letters
for the third - 7 letters
Number of variants - 8*7=56, but we have to take into account additional 3 variants with double letters EAAR, ENNR, EEER.
So the ultimate calculation is 56+3=59
Re: How many different four-letter words can be formed (the words don't [#permalink]
07 Apr 2015, 04:33
4
This post received KUDOS
Expert's post
3
This post was BOOKMARKED
Swaroopdev wrote:
Hi Bunuel, could you please explain the solution in your words ?
Thanks.
How many different four letter words can be formed (the words need not be meaningful) using the letters of the word MEDITERRANEAN such that the first letter is E and the last letter is R?
A. 59 B. 11!/(2!*2!*2!) C. 56 D. 23 E. 11!/(3!*2!*2!*2!)
E - - R
We are left with the following 11 letters: {M, D, I, T, R, EE, AA, NN} out of which 8 are distinct: {M, D, I, T, R, E, A, N}.
We should consider two cases: 1. If the two middle letters are the same, we'd have 3 words: EEER, EAAR and ENNR.
2. If the two middle letters are distinct, then we are basically choosing 2 letters out of 8 when the order of the selection matters, so it's 8P2 = 56.
Re: How many different four-letter words can be formed (the words don't [#permalink]
08 Apr 2015, 01:50
Expert's post
In the above problem, if the letters of the word MEDITERRANEAN are allowed to be used multiple times irrespective of their count in the parent word (commonly referred as ‘repetition’ in the P&C parlance), the answer would change. Let me explain the solution for such a case.
We need to fill the 2nd and the 3rd place with letters present in the word MEDITERRANEAN. Since, there are 8 different letters (M, E, D, I, T, R, A, N) in the word MEDITERRANEAN, the 2nd place can be filled with 8 possible letters and the 3rd place can also be filled with 8 possible letters (because, in the case we are discussing here, the letters can be used multiple times, even if they are present only once in the word MEDITERRANEAN).
So, we will have a total of 8*8 = 8^2= 64 possible set of words
Similarly, if the above case is extended to the first and the last letter as well (i.e. we don’t have the constraint of having ‘E’ as the first letter and ‘R’ as the last letter), we will have 8^4 possible sets of words which we can form from the word MEDITERRANEAN.
The key here is to be careful on two points:
•Whether letters can be used more than their count in the parent word, in this case MEDITERRANEAN.
•If yes, then we need to focus only on different letters present in the parent word, in this case the 8 different letters in the parent word MEDITERRANEAN.
Re: How many different four-letter words can be formed (the words don't [#permalink]
11 Apr 2015, 03:04
I used a diffrent method:
we can also solve this question with combinatorics fairly easy:
after E and R are set as the first and the last letters we are left with the two middle ones.
since both E and R show up more then once we can still use all the original letters for the two remeaining blanks.
actually our bank of letters will now look as so: M=1 E=2 D=1 I=1 T=1 R=1 A=2 N=2
if all remaining letters would have shown up just once the answer would have been: #=8P2=8!/(8-2)!=56
but since we are left with 3 letters that show up more then once (E,A,N) we need to add the possibilty of using the same letter twice, meaning: #=8P2+3=59
so the answer is A.
gmatclubot
Re: How many different four-letter words can be formed (the words don't
[#permalink]
11 Apr 2015, 03:04
As I’m halfway through my second year now, graduation is now rapidly approaching. I’ve neglected this blog in the last year, mainly because I felt I didn’...
Perhaps known best for its men’s basketball team – winners of five national championships, including last year’s – Duke University is also home to an elite full-time MBA...
Hilary Term has only started and we can feel the heat already. The two weeks have been packed with activities and submissions, giving a peek into what will follow...